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Chapter 1

Introduction to inverse problems

Solving an inverse problem is the task of computing an unknown physical quantity that is related
to given, indirect measurements via a forward model. Inverse problems appear in a vast majority
of applications, including imaging (Computed Tomography (CT), Positron Emission Tomography
(PET), Magnetic Resonance Imaging (MRI), Electron Tomography (ET), microscopic imaging,
geophysical imaging), signal- and image-processing, computer vision, machine learning and (big)
data analysis in general, and many more.

Mathematically, an inverse problem can be described as the solution of the operator equation

Ku = f (1.1)

with given measurement data f for the unknown quantity u. Here, K : U → V denotes an operator
mapping from the Banach space U to the Banach space V. For the better part of this lecture, we
are going to restrict ourselves to linear and bounded operators though.

Inverting a forward model however is not straightforward in most relevant applications, for two
basic reasons: either a (unique) inverse model simply does not exist, or existing inverse models
heavily amplify small measurement errors. In the sense of Hadamard the problem (1.1) is called
well-posed if

• for all input data there exists a solution of the problem, i.e. for all f ∈ V there exists a
u ∈ U with Ku = f .

• for all input data this solution is unique, i.e. u 6= v implies Kv 6= f .

• the solution of the problem depends continuously on the input datum, i.e. for all {uk}k∈N
with Kuk → f we have uk → u.

If any of these conditions is violated, problem (1.1) is called ill-posed. In the following we are going
to see that most practically relevant inverse problems are ill-posed or approximately ill-posed.1

1.1 Examples

In the following we are going to present various examples of inverse problems and highlight the
challenges of dealing with them.

1In fact the name ill-posed problems may be a more suitable name for this lecture, as the real challenge is to deal
with the ill-posedness of the inverse problems. However, the name inverse problems became more widely accepted
for this area of mathematics.
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8 1.1. EXAMPLES

1.1.1 Matrix inversion

One of the most simple (class of) inverse problems that arises from (numerical) linear algebra is
the solution of linear systems. These can be written in the form of (1.1) with u ∈ Rn and f ∈ Rn
being n-dimensional vectors with real entries and K ∈ Rn×n being a matrix with real entries. We
further assume K to be a symmetric, positive definite matrix. In that case we know from the
spectral theory of symmetric matrices that there exist eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn > 0 and
corresponding eigenvectors kj ∈ Rn for j ∈ {1, . . . , n} such that K can be written as

K =

n∑
j=1

λjkjk
T
j . (1.2)

It is well known from numerical linear algebra that the condition number κ = λ1/λn is a measure
of how stable (1.1) can be solved which we will illustrate in the following.

We assume that we observe f δ instead of f , with ‖f−f δ‖2 ≤ δ‖K‖ = δλ1, where ‖ ·‖2 denotes
the Euclidean norm and ‖K‖ the operator norm of K (largest singular value of K). Then, if we
further denote with uδ the solution of Kuδ = f δ, the difference between uδ and the solution u of
(1.1) reads as

u− uδ =
n∑
j=1

λ−1
j kjk

T
j

(
f − f δ

)
.

Therefore we can estimate∥∥∥u− uδ∥∥∥2

2
=

n∑
j=1

λ−2
j ‖kj‖22︸ ︷︷ ︸

=1

∣∣∣kTj (f − f δ)∣∣∣2 ≤ λ−2
n

∥∥∥f − f δ∥∥∥2

2
,

due to λn ≤ λj for j 6= 1 and the orthogonality of the eigenvectors. Thus, taking the square root
yields the estimate ∥∥∥u− uδ∥∥∥

2
≤ λ−1

n

∥∥∥f − f δ∥∥∥
2
≤ κδ .

Hence, we observe that in the worst case an error δ in the data y is amplified by the condition
number κ of the matrix K. A matrix with large κ is therefore called ill-conditioned. We want to
demonstrate the effect of this error amplification with a small example.

Example 1.1. Let us consider the matrix

K =

(
1 1
1 1001

1000

)
and the vector f = (1, 1)T . Then the solution of Ku = f is simply given via u = (1, 0)T . If we,
however, consider the perturbed data f δ = (99/100, 101/100)T instead of f , the solution uδ of
Kuδ = f δ is (exactly) uδ = (−19.01, 20)T . The eigenvalues in this example are λ1/2 = 1 + 1

2000 ±√
1 + 1

20002
which leads to the condition number κ ≈ 4002 � 1 and operator norm ‖K‖ ≈ 2.

The condition number in this example reflects nicely the amplication of the noise: error in data
n = (−0.01, 0.01), δ = ‖n‖/‖K‖ ≈

√
2/200), error in reconstruction e = (−20.01, 20), ‖e‖ ≈ 20

√
2,

noise amplification ‖e‖/δ ≈ 4000.
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1.1.2 Differentiation

Another classic inverse problem is differentiation. Assume we are given a function f with f(0) = 0
for which we want to compute u = f ′. For f smooth enough, these conditions are satisfied if and
only if u and f satisfy the operator equation

f(y) =

∫ y

0
u(x) dx ,

which can be written as the operator equation Ku = f with the linear operator (K·)(y) :=∫ y
0 ·(x) dx. As in the previous section, we assume that instead of f we observe a noisy version f δ

for which we further assume that the perturbation is additive, i.e. f δ = f +nδ with f ∈ C1([0, 1])
and nδ ∈ L∞([0, 1]).

It is obvious that the derivative u exists if the noise nδ is differentiable. However, even in
the (unrealistic) case nδ is differentiable the error in the derivative can become arbitrarily large.
Consider the sequence of noise functions nδ ∈ C1([0, 1]) ↪→ L∞([0, 1]) with

nδ(x) := δ sin

(
kx

δ

)
, (1.3)

for a fixed but arbitrary number k. We on the one hand observe
∥∥nδ∥∥

L∞([0,1])
= δ → 0, but on

the other hand have

uδ(x) = f ′(x) + k cos

(
kx

δ

)
,

and therefore obtain the estimate∥∥∥u− uδ∥∥∥
L∞([0,1])

=
∥∥∥(nδ)′

∥∥∥
L∞([0,1])

= k .

Thus, despite the noise in the data becoming arbitrarily small, the error in the derivative can
become arbitrarily big (depending on k). In any case for k > 0 we observe that the solution does
not depend continuously on the data.

Note that considering a decreasing error in the norm of the Banach space C1([0, 1]) will yield
a different result. If we have a sequence of noise functions (other than those defined in equation
(1.3)) with

∥∥nδ∥∥
C1([0,1])

≤ δ → 0 instead, we can conclude

∥∥∥u− uδ∥∥∥
L∞([0,1])

=
∥∥∥(nδ)′

∥∥∥
L∞([0,1])

≤
∥∥∥nδ∥∥∥

C1([0,1])
→ 0 ,

due to C1([0, 1]) being embedded in L∞([0, 1]). In contrast to the previous example the sequence
of functions nδ(x) := δ sin(kx) for instance satisfies∥∥∥nδ∥∥∥

C1([0,1])
= sup

x∈[0,1]

∣∣∣nδ(x)
∣∣∣+ sup

x∈[0,1]

∣∣∣(nδ)′(x)
∣∣∣ = (1 + k)δ → 0 .

However, for a fixed δ the bound on
∥∥u− uδ∥∥

L∞([0,1])
can obviously still become fairly large

compared to δ, depending on how large k is.
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1.1.3 Deconvolution

An interesting problem that occurs in many imaging, image- and signal processing applications is
the deblurring or deconvolution of signals from a known, linear degradation. Deconvolution of a
signal can be modelled as solving the inverse problem of the convolution, which reads as

f(y) = (Ku)(y) :=

∫
Rn
u(x)g(y − x) dx . (1.4)

Here f denotes the blurry image, u is the (unknown) true image and g is the function that models
the degradation. Due to the Fourier convolution theorem we can rewrite (1.4) to

f = (2π)
n
2F−1 (F(u)F(g)) . (1.5)

with F denoting the Fourier transform

F(u)(ξ) := (2π)−
n
2

∫
Rn
u(x) exp(−ix · ξ) dx (1.6)

and F−1 being the inverse Fourier transform

F−1(f)(x) := (2π)−
n
2

∫
Rn
f(ξ) exp(ix · ξ) dξ (1.7)

It is important to note that the inverse Fourier transform is indeed the unique, inverse operator of
the Fourier transform in the Hilbert-space L2 due to the theorem of Plancherel. If we rearrange
(1.5) to solve it for u we obtain

u = (2π)−
n
2F−1

(F(f)

F(g)

)
, (1.8)

and hence, we allegedly can recover u by simple division in the Fourier domain. However, we are
quickly going to discover that this inverse problem is ill-posed and the division will lead to heavy
amplifications of small errors.

Let u denote the image that satisfies (1.4). Further we assume that instead of the blurry image
f we observe f δ = f+nδ instead, and that uδ is the solution of (1.8) with input datum f δ. Hence,
we observe

(2π)
n
2

∣∣∣u− uδ∣∣∣ =

∣∣∣∣F−1

(F(f − f δ)
F(g)

)∣∣∣∣ =

∣∣∣∣F−1

(F(nδ)

F(g)

)∣∣∣∣ . (1.9)

As the convolution kernel g usually has compact support, F(g) will tend to zero for high frequen-
cies. Hence, the denominator of (1.9) becomes fairly small, whereas the numerator will be non-zero
as the noise is of high frequency. Thus, in the limit the solution will not depend continuously on
the data and the convolution problem therefore be ill-posed.

1.1.4 Tomography

In almost any tomography application the underlying inverse problem is either the inversion of
the Radon transform or of the X-ray transform in dimensions higher than two. For u ∈ C∞0 (Rn),
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ϕ

s

u(x)

t

tθ⊥

Figure 1.1: Visualization3 of the Radon transform in 2D (which conincides with the X-ray transform).
The function u is integrated over the ray parametrized by ϕ and s.

s ∈ R and θ ∈ Sn−1, the Radon transform2 R : C∞0 (Rn) → C∞(Sn−1 × R) can be defined as the
integral operator

f(θ, s) = (Ru)(θ, s) =

∫
x·θ=s

u(x) dx (1.10)

=

∫
θ⊥
u(sθ + y) dy ,

which for n = 2 coincides with the X-ray transform

f(θ, s) = (Pu)(θ, s) =

∫
R
u(sθ + tθ⊥) dt ,

for θ ∈ Sn−1 and x ∈ θ⊥. Hence, the X-ray transform (and therefore also the Radon transform in
two dimensions) integrates the function u over lines in Rn.

Example 1.2. Let n = 2. Then Sn−1 is simply the unit sphere S1 = {θ ∈ R2 | ‖θ‖2 = 1}. We
can choose for instance θ = (cos(ϕ), sin(ϕ))T , ϕ ∈ [0, 2π[, and parametrise the Radon transform
in terms of ϕ and s, i.e.

f(ϕ, s) = (Ru)(ϕ, s) =

∫
R
u(s cos(ϕ)− t sin(ϕ), s sin(ϕ) + t cos(ϕ)) dt . (1.11)

Note that—with respect to the origin of the reference coordinate system—ϕ determines the angle
of the line along one wants to integrate, while s is the offset of that line to the centre of the
coordinate system.

X-ray Computed Tomography (CT)

In X-ray computed tomography (CT), the unknown quantity u represents a spatially varying den-
sity that is exposed to X-radiation from different angles, and that absorbs the radiation according
to its material or biological properties.

2Named after the Austrian mathematician Johann Karl August Radon (16 December 1887 – 25 May 1956)
3Figure adapted from wikipedia https://commons.wikimedia.org/w/index.php?curid=3001440

https://commons.wikimedia.org/w/index.php?curid=3001440
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The basic modelling assumption for the intensity decay of an X-ray beam is that on a small
distance ∆t it is proportional to the intensity itself, the density and the distance, i.e.

I(x+ (t+ ∆t)θ)− I(x+ tθ)

∆t
= −I(x+ tθ)u(x+ tθ) ,

for x ∈ θ⊥. By taking the limit ∆t→ 0 we end up with the ordinary differential equation

d

dt
I(x+ tθ) = −I(x+ tθ)u(x+ tθ) . (1.12)

We now integrate (1.12) from t = −
√
R2 − ‖x‖22, the position of the emitter, to t =

√
R2 − ‖x‖22,

the position of the detector, to obtain∫ √R2−‖x‖22

−
√
R2−‖x‖22

d
dtI(x+ tθ)

I(x+ tθ)
dt = −

∫ √R2−‖x‖22

−
√
R2−‖x‖22

u(x+ tθ) dt .

Note that due to d/dx log(f(x)) = f ′(x)/f(x) the left hand side in the above equation simplifies
to∫ √R2−‖x‖22

−
√
R2−‖x‖22

d
dtI(x+ tθ)

I(x+ tθ)
dt = log

(
I

(
x+

√
R2 − ‖x‖22θ

))
− log

(
I

(
x−

√
R2 − ‖x‖22θ

))
.

As we know the radiation intensity at both the emitter and the detector, we therefore know
f(x, θ) := log(I(x− θ

√
R2 − ‖x‖22))− log(I(x+ θ

√
R2 − ‖x‖22)) and we can write the estimation

of the unknown density u as the inverse problem of the X-ray transform (1.11) (if we further
assume that u can be continuously extended to zero outside of the circle of radius R).

Positron Emission Tomography (PET)

In Positron Emission Tomography (PET) a so-called radioactive tracer (a positron emitting ra-
dionuclide on a biologically active molecule) is injected into a patient (or subject). The emitted
positrons of the tracer will interact with the subjects’ electrons after travelling a short distance
(usually less than 1mm), causing the annihilation of both the positron and the electron, which
results in a pair of gamma rays moving into (approximately) opposite directions. This pair of
photons is detected by the scanner detectors, and an intensity f(ϕ, s) can be associated with the
number of annihilations detected at the detector pair that forms the line with offset s and angle
ϕ (with respect to the reference coordinate system). Thus, we can consider the problem of recov-
ering the unknown tracer density u as a solution of the inverse problem (1.10) again. The line of
integration is determined by the position of the detector pairs and the geometry of the scanner.

1.1.5 Magnetic Resonance Imaging (MRI)

Magnetic resonance imaging (MRI) is an imaging technique that allows to visualise the chemical
composition of patients or materials. MRI scanners use strong magnetic fields and radio waves
to excite subatomic particles (like protons) that subsequently emit radio frequency signals which
can be measured by the radio frequency coils. In the following we want to briefly outline the
mathematics of the acquisition process. Subsequently we are going to see that finding the unknown
spin proton density basically leads to solving the inverse problem of the Fourier transform (1.6).
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The magnetisation of a so-called spin isochromat can be described by the Bloch equations4

d

dt

 Mx(t)
My(t)
Mz(t)

 =

 − 1
T2

γBz(t) −γBy(t)
−γBz(t) − 1

T2
γBx(t)

γBy(t) −γBx(t) − 1
T1

 Mx(t)
My(t)
Mz(t)

+

 0
0
M0
T1

 . (1.13)

Here M(t) = (Mx(t),My(t),Mz(t)) is the nuclear magnetisation (of the spin isochromat), γ is the
gyromagnetic ratio, B(t) = (Bx(t), By(t), Bz(t)) denotes the magnetic field experienced by the
nuclei, T1 is the longitudinal and T2 the transverse relaxation time and M0 the magnetisation in
thermal equilibrium. If we define Mxy(t) = Mx(t) + iMy(t) and Bxy(t) = Bx(t) + iBy(t), we can
rewrite (1.13) to

d

dt
Mxy(t) = −iγ (Mxy(t)Bz(t)−Mz(t)Bxy(t))−

Mxy(t)

T2
(1.14a)

d

dt
Mz(t) = i

γ

2

(
Mxy(t)Bxy(t)−Mxy(t)Bxy(t)

)
− Mz(t)−M0

T1
(1.14b)

with · denoting the complex conjugate of ·.
If we assume for instance that B = (0, 0, B0) is just a constant magnetic field in z-direction,

(1.14) reduces to the decoupled equations

d

dt
Mxy(t) = −iγB0Mxy(t)−

Mxy(t)

T2
, (1.15a)

d

dt
Mz(t) = −Mz(t)−M0

T1
. (1.15b)

It is easy to see that this system of equations (1.15) has the unique solution

Mxy(t) = e−t(iω0+1/T2)Mxy(0) (1.16a)

Mz(t) = Mz(0)e
− t
T1 +M0

(
1− e−

t
T1

)
(1.16b)

for ω0 := γB0 denoting the Lamor frequency, and Mxy(0), Mz(0) being the initial magnetisations
at time t = 0.

Rotating frame

Thus, for a constant magnetic background field in z-direction, B0, Mxy basically rotates around
the z-axis in clockwise direction with frequency ω0 (if we ignore the T2 decay for a moment).
Rotating the x- and y-coordinate axes with the same frequency yields the representation of the
Bloch equations in the so-called rotating frame. If we substitute M r

xy(t) := eiω0tMxy(t), Br
xy(t) :=

Bxy(t)e
iω0t, M r

z (t) := Mz(t) and Br
z(t) := Bz(t), we obtain

d

dt
M r
xy(t) = −iγ

(
M r
xy(t)(B

r
z(t)−B0)−M r

z (t)Br
xy(t)

)
−
M r
xy(t)

T2
(1.17a)

d

dt
M r
z (t) = i

γ

2

(
M r
xy(t)B

r
xy(t)−M r

xy(t)B
r
xy(t)

)
− M r

z (t)−M0

T1
(1.17b)

instead of (1.14).
4Named after the Swiss born American physicist Felix Bloch (23 October 1905 - 10 September 1983)
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Thus, if we assume the magnetic field to be constant with magnitude B0 in z-direction within
the rotating frame, i.e. Br(t) = (Br

x(t), Br
y(t), B0), (1.17a) simplifies to

d

dt
M r
xy(t) = iγM r

z (t)Br
xy(t)−

M r
xy(t)

T2
. (1.18)

90◦ pulse

Now we assume that Br
x(t) = c, c constant, and Br

y(t) = 0 for t ∈ [0, τ ], and τ � T1 and τ � T2.
Then we can basically ignore the effect ofM r

xy(t)/T2 and (M r
z (t)−M0)/T1, and the Bloch equations

in the rotating frame simplify to

d

dt

 M r
x(t)

M r
y (t)

M r
z (t)

 =

 0 0 0
0 0 ω
0 −ω 0

 M r
x(t)

M r
y (t)

M r
z (t)

 (1.19)

with ω := γc, in matrix form with separate components. Assuming the initial magnetisations in
the rotating frame to be zero in the x-y plane, i.e. M r

x(0) = 0 and M r
y (0) = 0, and constant in

the z-plane with value M r
z (0), the solution of (1.19) can be written as M r
x(t)

M r
y (t)

M r
z (t)

 =

 1 0 0
0 cos(ωt) sin(ωt)
0 − sin(ωt) cos(ωt)

 0
0

M r
z (0)

 . (1.20)

Thus, equation (1.20) rotates the initial z-magnetisation around the x-axis by the angle θ := ωt.
Note that if c and τ are chosen such that θ = π, all magnetisation is rotated from the z-axis to
the y-axis, i.e. M r

y (τ) = M r
z (0). In analogy, choosing Bx(t) = 0 and By(t) = c, all magnetisation

can be shifted from the z- to the x-axis.

Signal acquisition

If the radio-frequency (RF) pulse is turned off and thus, Br
x(t) = 0 and Br

y(t) = 0 for t > τ ,
the same coils that have been used to induce the RF pulse can be used to measure the x-y
magnetisation. Since we measure a volume of the whole x-y net-magnetisation, the acquired
signal equals

y(t) =

∫
R3

M(x, t) dx =

∫
R2

e−iω0(x)tM r(x, t) dx (1.21)

with M(x, t) denoting Mxy(t) for a specific spatial coordinate x ∈ R3 (M r(x, t) respectively).
Using (1.16a) and assuming τ < t� T2, this yields

y(t) =

∫
R3

Mτ (x)e−iω0(x)t dx , (1.22)

with Mτ denoting the x-y-magnetisation at spatial location x ∈ R3 and time t = τ . Note that
Mτ = 0 without any RF pulse applied in advance.
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Signal recovery

The basic clue to allow for spatially resolving nuclear magnetic resonance spectrometry is to add
a magnetic field B̂(t) to the constant magnetic field B0 in z-direction that varies spatially over
time. Then, (1.15a) changes to

d

dt
Mxy(t) = −iγ(B0 + B̂(t))Mxy(t)−

Mxy(t)

T2
,

which, for initial value Mxy(0), has the unique solution

Mxy(t) = e−iγ(B0t+
∫ t
0 B̂(τ) dτ)e

− t
T2Mxy(0) (1.23)

if we ensure B̂(0) = 0. If now x(t) denotes the spatial location of a considered spin isochromat at
time t, we can write B̂(t) as B̂(t) = x(t) ·G(t), with a function G that describes the influence of
the magnetic field gradient over time.
Based on the considerations that lead to (1.22) we therefore measure

y(t) =

∫
R3

Mτ (x)e−iγ(B0(x)t+
∫ t
0 x(τ)·G(τ) dτ) dx

in an NMR experiment. Assuming that B0 is also constant in space, we can consider the equation in
the rotating frame (see Section 1.1.5) by eliminating this term and by writing the signal acquisition
as

eiγB0ty(t) =

∫
R3

Mτ (x)e−iγ
∫ t
0 x(τ)·G(τ) dτ dx . (1.24)

In the following we assume that x(t) can be approximated reasonably well via its zero-order
Taylor approximation around t0 = 0, i.e.∫ t

0
x(τ) ·G(τ) dτ ≈ x(0) ·

∫ t

0
G(τ) dτ . (1.25)

and hence, the inverse problem of finding the unknown spin-proton density Mτ for given measure-
ments y is equivalent to solving the inverse problem of the Fourier transform

f(t) = (KMτ )(t) =

∫
R3

Mτ (x)e−ix·ξ(t) dx , (1.26)

with f(t) := eiγB0ty(t) and ξ(t) := γ
∫ t

0 G(τ) dτ .
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Chapter 2

Linear inverse problems

Throughout this lecture we deal with functional analytic operators. For the sake of brevity, we
cannot recall all basic concepts of functional analysis but refer to popular textbooks that deal with
this subject, like [4, 15]. Nevertheless, we want to recall a few important properties that are going
to be important for the further course of this lecture. In particular, we are going to focus mainly
on inverse problems with bounded, linear operators K only, i.e. K ∈ L(U ,V) with

‖K‖L(U ,V) := sup
u∈U\{0}

‖Ku‖V
‖u‖U

= sup
‖u‖U≤1

‖Ku‖V <∞ .

For K : U → V we further want to denote with

(a) D(K) := U the domain

(b) N (K) := {u ∈ U | Ku = 0} the kernel

(c) R(K) := {f ∈ V | f = Ku, u ∈ U} the range

of K. We say that K is continuous in u ∈ U if there exists a δ > 0 for all ε > 0 with

‖Ku−Kv‖V ≤ ε for all v ∈ U with ‖u− v‖U ≤ δ.

For linear K it can be shown that continuity is equivalent to the existence of a positive constant
C such that

‖Ku‖V ≤ C‖u‖U

for all u ∈ U . Note that this constant C actually equals the operator norm ‖K‖L(U ,V).
For the first part of the lecture we only consider K ∈ L(U ,V) with U and V being Hilbert

spaces. From functional calculus we know that every Hilbert space is equipped with a scalar
product, which we are going to denote by 〈·, ·〉U (if U denotes the corresponding Hilbertspace). In
analogy to the transpose of a matrix, this scalar product structure together with the theorem of
Fréchet-Riesz [15, Section 2.10, Theorem 2.E] allows us to define the (unique) adjoint operator of
K, denoted with K∗, as follows:

〈Ku, v〉V = 〈u,K∗v〉U .

17
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U V

u

f

K

N (K)⊥

N (K)

R(K)

R(K)⊥

Figure 2.1: Visualization of the setting for linear inverse problems where we want to solve the inverse
problem (1.1). The operator K is a linear mapping between U and V. The kernel N (U) and range R(K)
are used to analyse solutions to the inverse problem.

In addition to that, a scalar product allows to have a notion of orthogonality. Two functions
u, v ∈ U are said to be orthogonal if 〈u, v〉U = 0. For a subset X ⊂ U the orthogonal complement
of X in U is defined as

X⊥ := {u ∈ U | 〈u, v〉U = 0 for all v ∈ X} .

From this definition we immediately observe that X⊥ is a closed subspace. Further we have
U⊥ = {0}. Moreover, we have X ⊂ (X⊥)⊥. If X is a closed subspace we even have X = (X⊥)⊥.
In this case there exists the orthogonal decomposition

U = X ⊕ X⊥ ,

which means that every element u ∈ U can uniquely be represented as

u = x+ x⊥ with x ∈ X , x⊥ ∈ X⊥ ,

see for instance [15, Section 2.9, Corollary 1]. The mapping u 7→ x defines a linear operator
PX ∈ L(U ,U) that is called orthogonal projection on X .
Lemma 2.1 (cf. [10, Section 5.16]). Let X ⊂ U be a closed subspace. The orthogonal projection
onto X satisfies the following conditions:

(a) PX is self-adjoint, i.e. P ∗X = PX ;

(b) ‖PX ‖L(U ,U) = 1 (if X 6= {0});
(c) I − PX = PX⊥;

(d) ‖u− PXu‖U ≤ ‖u− v‖U for all v ∈ X ;
(e) x = PXu if and only if x ∈ X and u− x ∈ X⊥.

Remark 2.1. Note that for a non-closed subspace X we only have (X⊥)⊥ = X . For K ∈ L(U ,V)
we therefore have R(K)⊥ = N (K∗),R(K∗)⊥ = N (K) and thus N (K∗)⊥ = R(K) and N (K)⊥ =
R(K∗). Hence, we can conclude the orthogonal decompositions

U = N (K)⊕R(K∗) and V = N (K∗)⊕R(K) .

In the following we want to investigate the concept of generalised inverses of bounded linear
operators, before we will identify compactness of operators as the major source of ill-posedness.
Subsequently we are going to discuss this in more detail by analysing compact operators in terms
of their singular value decomposition.
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2.1 Generalised solutions

In order to overcome the issues of non-existence or non-uniqueness we want to generalise the
concept of least squares solutions to linear operators in Hilbert spaces.

If we consider the generic inverse problem (1.1) again, we know that there does not exist a
solution of the inverse problem if f /∈ R(K). In that case it seems reasonable to find an element
u ∈ U for which ‖Ku− f‖V gets minimal instead. If V = L2 then u minimizes the squared error
and thus motivates the name least squares solution.

However, for N (K) 6= {0} there are infinitely many solutions that minimise ‖Ku − f‖V of
which we have to pick one. Picking the one with minimal norm ‖u‖U brings us to the definition
of the minimal norm solution.

Definition 2.1. We call u ∈ U a least squares solution of the inverse problem (1.1), if

‖Ku− f‖V ≤ ‖Kv − f‖V for all v ∈ U . (2.1)

Furthermore, we call u† ∈ U a minimal norm solution of the inverse problem (1.1), if

‖u†‖U ≤ ‖v‖U for all least squares solutions v. (2.2)

Remark 2.2. Let u be a least squares solution to Ku = f . It is easy to see that each v ∈
{u}+N (K) is a least squares solution as well.

Moreover, let u† be a minimal norm solution, then u† ∈ N (K)⊥. If this was not the case, then
there exists x⊥ ∈ N (K)⊥ and x ∈ N (K) with ‖x‖U > 0 such that u† = x + x⊥. It is obvious
that x⊥ is a least squares solution and has smaller norm than u† which contradicts that u† is of
minimal norm, thus u† ∈ N (K)⊥.

In numerical linear algebra it is a well known fact that the normal equations can be considered
to compute least squares solutions. The same is true in the continuous case.

Theorem 2.1. Let f ∈ V and K ∈ L(U ,V). The following three assertions are equivalent.

(a) u ∈ U satisfies Ku = PR(K)
f

(b) u is a least squares solution of the inverse problem (1.1).

(c) u solves the normal equation

K∗Ku = K∗f . (2.3)

Remark 2.3. The name normal equation is derived from the fact that for any solution u its
residual Ku − f is orthogonal (normal) to R(K). This can be readily seen, as we have for any
v ∈ U that

0 = 〈v,K∗(Ku− f)〉U = 〈Kv,Ku− f〉V

which shows Ku− f ∈ R(K)⊥.

Proof of Theorem 2.1. For (a) ⇒ (b): Let u ∈ U such that Ku = PR(K)
f and arbitrary v ∈ U .

With the basic properties of the orthogonal projection (Lemma 2.1 (d)), we have

‖Ku− f‖2V = ‖(I − PR(K)
)f‖2V ≤ inf

g∈R(K)
‖g − f‖2V ≤ inf

v∈U
‖Kv − f‖2V
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which shows that u is a least squares solution.
For (b) ⇒ (c): Let u ∈ U be a least squares solution v ∈ U an arbitrary element and define

the quadratic polynom F : R→ R,

F (λ) := ‖K(u+ λv)− f‖2V = λ2‖Kv‖2V − 2λ〈Kv, f −Ku〉V + ‖f −Ku‖2V .

A necessary condition for u ∈ U to be a least squares solution is F ′(0) = 0 which leads to
〈v,K∗(f −Ku)〉V = 0. As v was arbitrary, it follows that the normal equation holds.

For (c)⇒ (a): From the normal equation it follows that K∗(f−Ku) = 0 which is equivalent to
f −Ku ∈ R(K)⊥, see Remark 2.3. As R(K)⊥ = R(K)

⊥
and Ku ∈ R(K) ⊂ R(K), the assertion

follows from the basic properties of the orthogonal projection, i.e. Lemma 2.1 (e).

Lemma 2.2. Let f ∈ V and L be the set of least squares solutions to the inverse problem (1.1).
Then L is non-empty if and only if f ∈ R(K)⊕R(K)⊥.

Proof. Let u ∈ L. It is easy to see that f = Ku + (f − Ku) ∈ R(K) ⊕ R(K)⊥ as the normal
equations are equivalent to f −Ku ∈ R(K)⊥.

Consider now f ∈ R(K) ⊕R(K)⊥. Then there exists u ∈ U and g ∈ R(K)⊥ = R(K)
⊥

such
that f = Ku + g and thus PR(K)

f = PR(K)
Ku + PR(K)

g = Ku and the assertion follows from
Theorem 2.1.

Remark 2.4. If the dimensions of U andR(K) are finite, thenR(K) is closed, i.e. R(K) = R(K).
Thus, in a finite dimensional setting, there always exists a least squares solution.

It is natural to ask whether there are always least squares solutions. From the remark above it
is clear that we have to look for an example in infinite dimensional spaces. The answer is negative
as we see from the following counter example.

Example 2.1. Let U = `2,V = `2, where the space `2 is the space of all square summable
sequences, i.e.

`2 :=

{
{xj}j∈N

∣∣∣∣ xj ∈ R,
∞∑
j=1

x2
j <∞

}
.

It is a Hilbert space with inner product and norm given by

〈x, y〉`2 :=

∞∑
j=1

xjyj and ‖x‖`2 :=

 ∞∑
j=1

x2
j

1/2

.

For more information, consult for instance [4].
Consider the inverse problem Kx = f , where the linear operator K : `2 → `2 is defined by

(Kx)j :=
xj
j

.

and the data by fj := j−1. It is easy to see that K is linear and bounded (what is the operator
norm of K?), i.e. K ∈ L(`2, `2) and f ∈ `2.

We will show that f ∈ R(K)\R(K) and thus f 6∈ R(K)⊕R(K)⊥. With Lemma 2.2 it follows
then that there are no least squares solutions.
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First we show that f 6∈ R(K) by contradiction. Assume that f ∈ R(K), then there exists
x ∈ `2 such that Kx = f and thus j−1xj = j−1 for all j ∈ N. Therefore, we have xj = 1 and
x 6∈ `2.

Next we show that f ∈ R(K). Let {xk}k∈N ⊂ `2 be a sequence in `2 (each element is a
sequence as well), with

(xk)j :=

{
1, j ≤ k
0, j > k

.

It is easy to see that xk ∈ `2 as it has only finitely many non-negative components. In addition,
we have

fk := Kxk, (fk)j =

{
1
j , j ≤ k
0, j > k

and therefore

‖f − fk‖2`2 =
∞∑

j=k+1

f2
j =

∞∑
j=1

f2
j −

k∑
j=1

f2
j → 0

by definition of a convergent series. Therefore fk → f in `2 and thus f ∈ R(K).

Theorem 2.2. Let f ∈ R(K)⊕R(K)⊥. Then there exists a unique minimal norm solution u† to
the inverse problem (1.1) and all least squares solutions are given by {u†}+N (K).

Proof. From Lemma 2.2 we know that there exist least squares solutions and denote any arbitrary
two of them (not necessarily different) by u, v ∈ U . Then there exist ϕ,ψ ∈ N (K)⊥ and x, y ∈
N (K) such that u = ϕ+ x and v = ψ + y. As we noted in Remark 2.2 ϕ and ψ are least squares
solutions as well. With Theorem 2.1 we conclude

K(ϕ− ψ) = Kϕ−Kψ = PR(K)
f − PR(K)

f = 0 (2.4)

which shows that ϕ−ψ ∈ N (K). But as ϕ−ψ ∈ N (K)⊥ and N (K)∩N (K)⊥ = {0} we see that
ϕ = ψ. Therefore all least squares solutions are of the form {ϕ}+N (K).

Moreover, we know that u† is a least squares solution and that u† ∈ N (K)⊥, see Remark 2.2.
Thus we have that u† = ϕ which completes the proof.

Corollary 2.1. The minimal norm solution is the unique solution of the normal equation in
N (K)⊥.

2.2 Generalised inverse

We have seen that for arbitrary f a least squares solution does not need to exist if R(K) is not
closed. If, however, a least squares solution exists, then we have shown that the minimum norm
solution is unique. We will see in the following that the minimum norm solution can be computed
via the Moore–Penrose generalised inverse.
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Definition 2.2. Let K ∈ L(U ,V) and denotes the restriction of K to N (K)⊥ by

K̃ := K|N (K)⊥ : N (K)⊥ → R(K) .

The Moore–Penrose inverse K† : D(K†) → U is defined as the unique linear extension of K̃−1 to
D(K†) := R(K)⊕R(K)⊥ with K†f = 0 for f ∈ R(K)⊥, i.e. N (K†) = R(K)⊥.

Remark 2.5. Note that K̃ is injective due to the restriction to N (K)⊥, and surjective due to
the restriction to R(K). Hence, K̃−1 exists, and—as a consequence—K† is well-defined on R(K).
Due to the orthogonal decomposition D(K†) = R(K) ⊕ R(K)⊥, for arbitrary f ∈ D(K†) there
exist f1 ∈ R(K) and f2 ∈ R(K)⊥ with f = f1 + f2. Hence, we have

K†f = K†f1 +K†f2 = K†f1 = K̃−1f1 = K̃−1PR(K)
f , (2.5)

where we used that f2 ∈ R(K)⊥ = N (K†). Thus, K† is well-defined on the whole of D(K†).

Example 2.2. To illustrate the definition of the Moore–Penrose inverse we consider a simple
example in finite dimensions. Let the linear operator K : R3 → R2 be given by

Kx =

(
2 0 0
0 0 0

)x1

x2

x3

 =

(
2x1

0

)

and consider the right hand side f̃ = (8, 1)T . It is easy to see that R(K) = {f ∈ R2 | f2 = 0}
and N (K) = {x ∈ R3 | x1 = 0}, thus N (K)⊥ = {x ∈ R3 | x2, x3 = 0}. Therefore, K̃ : N (K)⊥ →
R(K), x 7→ (2x1, 0)T which is bijective and can be easily inverted: K̃−1 : R(K) → N (K)⊥, f 7→
(f1/2, 0, 0)T . As the orthogonal projection onto R(K) is given by f = (f1, f2) 7→ (f1, 0), the
Moore–Penrose inverse of K is K† : R2 → R3,

K†f =

1/2 0
0 0
0 0

(f1

f2

)
=

f1/2
0
0

 ,

and thus K†f̃ = K†(8, 0)T = (4, 0, 0)T .

It can be shown that K† can be characterized by the Moore–Penrose equations.

Lemma 2.3. The Moore–Penrose inverse K† is linear and R(K†) = N (K)⊥. Moreover, it
satisfies the Moore–Penrose equations

(a) KK†K = K,

(b) K†KK† = K†,

(c) K†K = I − PN (K),

(d) KK† = PR(K)

∣∣∣
D(K†)

,

where PN (K) and PR(K)
denote the orthogonal projections on N (K) and R(K), respectively.
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Proof. First of all we note that by definition the Moore–Penrose inverse is linear.
Let us now prove R(K†) = N (K)⊥. Let u ∈ R(K†), then there exists a f ∈ D(K†) with

u = K†f and according to (2.5) we observe that u = K†f = K̃−1PR(K)
f . Hence, u ∈ R(K̃−1) =

N (K)⊥ and therefore R(K†) ⊂ N (K)⊥. To prove N (K)⊥ ⊂ R(K†), let u ∈ N (K)⊥ and it holds
u = K̃−1K̃u = K†Ku, thus u ∈ R(K†).

It remains to prove the Moore–Penrose equations. We begin with (d): For f ∈ D(K†) it follows
from (2.5) and K = K̃ on N (K)⊥ that

KK†f = KK̃−1PR(K)
f = K̃K̃−1PR(K)

f = PR(K)
f .

(c): According to the definition of K† we have K†Ku = K̃−1Ku for all u ∈ U and thus

K†Ku = K̃−1KPN (K)u︸ ︷︷ ︸
=0

+K̃−1K (I − PN (K))︸ ︷︷ ︸
=PN (K)⊥

u = (I − PN (K))u .

(b): Inserting (d) into (2.5) yields

K†f = K†PR(K)
f = K†KK†f .

(a): With (c) we have

KK†K = K(I − PN (K)) = K −KPN (K) = K .

The following theorem states that minimum norm solutions can be computed via the generalised
inverse.

Theorem 2.3. For each f ∈ D(K†) the minimal norm solution u† to the inverse problem (1.1) is
given via

u† = K†f .

Proof. As f ∈ D(K†), we know from Theorem 2.2 that the minimal norm solution u† exists and
is unique. With u† ∈ N (K)⊥, Lemma 2.3 and Theorem 2.1 we conclude that

u† = (I − PN (K))u
† = K†Ku† = K†PR(K)

f = K†KK†f = K†f .

As a direct consequence from Theorem 2.3 and Theorem 2.1 we obtain

K†f = (K∗K)†K∗f ,

and hence, in order to approximate K†f we may also compute an approximation via the normal
equations (2.3) instead.

At the end of this section we further want to analyse the domain of the generalised inverse in
more detail. Due to the construction of the Moore–Penrose inverse we have D(K†) = R(K) ⊕
R(K)⊥. As orthogonal complements are always closed we can conclude

D(K†) = R(K)⊕R(K)⊥ = V ,
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and hence, D(K†) is dense in V. Thus, if R(K) is closed it follows that D(K†) = V and vice versa,
D(K†) = U implies R(K) to be closed. Moreover, for f ∈ R(K)⊥ = N (K†) the minimum norm
solution is u† = 0. Therefore, for given f ∈ R(K) the important question to address is when f
also satisfies f ∈ R(K). If this is the case, K† has to be continuous. However, the existence of a
single element f ∈ R(K) \ R(K) is enough already to prove that K† is discontinuous.

Definition 2.3. Let V and U be Hilbert spaces and consider A : V → U . We call the graph of A

gr(A) := {(f, u) ∈ V × U | Af = u}

closed, if for any sequence {(fj , uj)}j∈N with uj = Afj, fj → f ∈ V and uj → u ∈ U we have
Af = u.

Theorem 2.4 (Closed graph theorem [13, Proposition 2.14 and Theorem 2.15]). Let V and U be
Hilbert spaces, A : V → U a linear mapping and with a closed graph. Then A ∈ L(V,U).

Theorem 2.5. Let K ∈ L(U ,V). Then K† is continuous, i.e. K† ∈ L(D(K†),U), if and only if
R(K) is closed.

Proof. We will show first that the graph of the Moore–Penrose inverse is closed. Let {(fj , uj)}j∈N ⊂
gr(K†) be a sequence in the graph of the Moore–Penrose inverse, i.e. uj = K†fj , and fj → f and
uj → u. Then because of Lemma 2.1 and the continuity of the orthogonal projection and K, we
have

Ku = lim
j→∞

Kuj = lim
j→∞

KK†fj = lim
j→∞

PR(K)
fj = PR(K)

f ,

thus u is a least squares solution. As K†fj ∈ N (K)⊥ and N (K)⊥ is closed, we have u ∈ N (K)⊥

and it follows from the uniqueness of the minimal norm solution that u = K†f . This shows that
the graph of K† is closed.

For the proof of the actual theorem, assume first that R(K) is closed so that D(K†) = V.
Therefore, K† is bounded by the Closed graph theorem (Theorem 2.4).

Conversely, let K† be continuous. As D(K†) is dense in V, there is a unique continuous
extension A of K† to V. From Lemma 2.3 (d), KK† = PR(K)

|D(K†), and the continuity of K

we conclude that KA = PR(K)
so that for f ∈ R(K), f = PR(K)

f = KAf ∈ R(K). Thus,

R(K) ⊂ R(K), so that R(K) is closed.

In the next section we are going to discover that the class of compact operators is a class for
which the Moore–Penrose inverses are discontinuous.

2.3 Compact operators

Compact operators are very common in inverse problems; in fact, almost all (linear) inverse prob-
lems involve the inversion of compact operators. Compact operators are defined as follows.

Definition 2.4. Let K ∈ L(U ,V). Then K is said to be compact if the image of a bounded
sequence {uj}j∈N ⊂ U contains a convergent subsequence {Kujk}k∈N ⊂ V. We denote the space of
compact operators by K(U ,V).

Remark 2.6. We can equivalently define an operator K to be compact if and only if for any
bounded set B, the closure of its image K(B) is compact.
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Example 2.3 (Follows from e.g. [16, p. 49]). Let I : U → U be the identity operator on U , i.e.
u 7→ u. Then I is compact if and only if the dimension of I is finite.

Example 2.4 (e.g. [16, p. 286, Proposition 5] or [4, p. 186]). Let K ∈ L(U ,V). If the range of
K is finite dimensional, then K is compact.

Example 2.5 ([8, p. 230]). The operator K : `2 → `2, (Kx)j = j−1xj from Example 2.1 is
compact.

Example 2.6 ([8, p. 231]). Let ∅ 6= Ω ⊂ Rn be compact. Let k ∈ L2(Ω × Ω) and define the
integral operator K : L2(Ω)→ L2(Ω) with

(Ku)(x) =

∫
Ω
k(x, y)u(x) dy .

Then K is compact.

Example 2.7 ([11, p. 38]). Let B := {x ∈ R2 | x2
1 + x2

2 ≤ 1} denote the unit ball in R2 and
Z := [−1, 1] × [0, π). Moreover, let θ(ϕ) := (cos(ϕ), sin(ϕ))T , θ⊥(ϕ) := (sin(ϕ),− cos(ϕ))T be
the unit vectors pointing in the direction described by ϕ and orthogonal to it. Then the Radon
transform / X-ray transform is defined as the operator R : L2(B)→ L2(Z) with

(Ru)(s, ϕ) :=

∫ √1−s2

−
√

1−s2
u
(
sθ(ϕ) + tθ⊥(ϕ)

)
dt .

It can be shown that the Radon transform is linear and continuous, i.e. R ∈ L(L2(B), L2(Z)),
and even compact, i.e. R ∈ K(L2(B), L2(Z)).

Compact operators can be seen as the infinite dimensional analogue to ill-conditioned matrices.
Indeed it can be seen that compactness is a main source of ill-posedness in infinite dimensions,
confirmed by the following result.

Theorem 2.6. Let K ∈ K(U ,V) with an infinite dimensional range. Then, the Moore–Penrose
inverse of K is discontinuous.

Proof. As the range R(K) is of infinite dimension, we can conclude that U and N (K)⊥ are also
infinite dimensional. We can therefore find a sequence {uj}j∈N with uj ∈ N (K)⊥, ‖uj‖U = 1 and
〈uj , uk〉U = 0 for j 6= k. Since K is a compact operator the sequence fj = Kuj has a convergent
subsequence, hence, for all δ > 0 we can find j, k such that ‖fj − fk‖V < δ. However, we also
obtain

‖K†fj −K†fk‖2U = ‖K†Kuj −K†Kuk‖2U
= ‖uj − uk‖2U = ‖uj‖2U − 2〈uj , uk〉U + ‖uk‖2U = 2 ,

which shows that K† is discontinuous.

To have a better understanding of when we have f ∈ R(K) \ R(K) for compact operators K,
we want to consider the singular value decomposition of compact operators.
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2.4 Singular value decomposition of compact operators

We want to characterise the Moore–Penrose inverse of compact operators in terms of a spectral
decomposition. Like in the finite dimensional case of matrices, we can only expect a spectral
decomposition to exist for self-adjoint operators.

Theorem 2.7 ([8, p. 225, Theorem 9.16]). Let U be a Hilbert space and K ∈ K(U ,U) be self-
adjoint. Then there exists an orthonormal basis {uj}j∈N ⊂ U of R(K) and a sequence of Eigen-
values {λj}j∈N ⊂ R with |λ1| ≥ |λ2| ≥ . . . > 0 such that for all u ∈ U we have

Ku =
∞∑
j=1

λj〈u, uj〉Uuj .

The sequence {λj}j∈N is either finite or we have λj → 0.

Remark 2.7. The notation in the theorem above only makes sense if the sequence {λj}j∈N is
infinite. For the case that there are only finitely many λj the sum has to be interpreted as a finite
sum.

Moreover, as the absolute value of the Eigenvalues |λj | are sorted, we have ‖K‖L(U ,U) = |λ1|.

Due to Theorem 2.1 we can consider K∗K instead of K, which brings us to the singular value
decomposition of linear, compact operators.

Theorem 2.8. Let K ∈ K(U ,V). Then there exists i) a not-necessarily infinite null sequence
{σj}j∈N with σ1 ≥ σ2 ≥ . . . > 0, ii) an orthonormal basis {uj}j∈N ⊂ U of N (K)⊥ and iii) an
orthonormal basis {vj}j∈N ⊂ V of R(K), with

Kuj = σjvj , K∗vj = σjuj for all j ∈ N (2.6)

and for all w ∈ U we have the representation

Kw =
∞∑
j=1

σj〈w, uj〉U vj . (2.7)

The sequence {(σj , uj , vj)} is called singular system or singular value decomposition (SVD) of
K.

Proof. As K∗K : U → U is compact and self-adjoint, by Theorem 2.7 there exists a decreasing (in
terms of absolute values) null sequence {λj}j∈N ⊂ R \ {0} and an orthonormal basis {uj}j∈N ⊂ U
of R(K∗K) with K∗Ku =

∑∞
j=1 λj〈u, uj〉Uuj for all u ∈ U .

Due to

λj = λj‖uj‖2U = 〈λjuj , uj〉U = 〈K∗Kuj , uj〉U = 〈Kuj ,Kuj〉V = ‖Kuj‖2V > 0

we can define σj :=
√
λj and vj := (Kuj)/σj ∈ V for all j ∈ N. Further, we observe

K∗vj =
1

σj
K∗Kuj =

λj
σj
uj = σjuj

which proves Equation (2.6).
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We also obverse that {vj}j∈N form an orthonormal system due to

〈vi, vj〉V =
1

σiσj
〈Kui,Kuj〉V =

1

σiσj
〈K∗Kui, uj〉U =

λi
σiσj
〈ui, uj〉U =

{
1 i = j

0 else
.

We know that {uj}j∈N is an orthonormal basis ofR(K∗K) and we want to show that it is also an
orthonormal basis of N (K)⊥. AsR(K∗) = N (K)⊥ it is sufficient to show thatR(K∗K) = R(K∗).
It is clear that R(K∗K) = R(K∗|R(K)) ⊂ R(K∗), such that we are left to prove R(K∗) ⊂
R(K∗K). Let u ∈ R(K∗) and ε > 0. Then there exists f ∈ N (K∗)⊥ with ‖K∗f − u‖U < ε/2. As
N (K∗)⊥ = R(K), there exists x ∈ U such that ‖Kx − f‖V < ε/(2‖K‖). Putting these together
we have

‖K∗Kx− u‖U ≤ ‖K∗Kx−K∗f‖U + ‖K∗f − u‖U
≤ ‖K∗‖‖Kx− f‖V︸ ︷︷ ︸

<ε/2

+ ‖K∗f − u‖U︸ ︷︷ ︸
<ε/2

< ε

which shows that u ∈ R(K∗K).
To show the basis representation of Kw let

wN :=
N∑
j=1

〈w, uj〉Uuj

be a finite approximation of the basis representation of w ∈ N (K)⊥. Then it is easy to see that

KwN =
N∑
j=1

〈w, uj〉UKuj =
N∑
j=1

σj〈w, uj〉Uvj

=

N∑
j=1

〈w, σjuj〉Uvj =

N∑
j=1

〈w,K∗vj〉Uvj =

N∑
j=1

〈Kw, vj〉Vvj .

With wN → w and the continuity of K we have that

Kw = lim
N→∞

KwN = lim
N→∞

N∑
j=1

σj〈wN , uj〉Uvj =

∞∑
j=1

σj〈wN , uj〉Uvj

which shows (2.7). Moreover, we can also conclude that

Kw =
∞∑
j=1

〈Kw, uj〉Uvj

which shows that {vj}j∈N is an orthonormal basis of R(K) and thus also of R(K).

Remark 2.8. Since Eigenvalues of K∗K with Eigenvectors uj are also Eigenvalues of KK∗ with
Eigenvectors vj , we further obtain a singular value decomposition of K∗, i.e.

K∗z =
∞∑
j=1

σj〈z, vj〉V uj .
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A singular system allows us to characterize elements in the range of the operator.

Theorem 2.9. Let K ∈ K(U ,V) with singular system {(σj , uj , vj)}j∈N, and f ∈ R(K). Then
f ∈ R(K) if and only if the Picard criterion

∞∑
j=1

|〈f, vj〉V |2
σ2
j

<∞ (2.8)

is met.

Proof. Let f ∈ R(K), thus there is a u ∈ U such that Ku = f . It is easy to see that we have

〈f, vj〉V = 〈Ku, vj〉V = 〈u,K∗vj〉U = σj〈u, uj〉U
and therefore

∞∑
j=1

σ−2
j |〈f, vj〉V |2 =

∞∑
j=1

|〈u, uj〉U |2 ≤ ‖u‖2U <∞ .

Now let the Picard criterion (2.8) hold and define u :=
∑∞

j=1 σ
−1
j 〈f, vj〉Vuj ∈ U . It is well-

defined by the Picard criterion (2.8) and we conclude

Ku =
∞∑
j=1

σ−1
j 〈f, vj〉VKuj =

∞∑
j=1

〈f, vj〉Vvj = PR(K)
f = f ,

which shows f ∈ R(K).

Remark 2.9. The Picard criterion is a condition on the decay of the coefficents 〈f, vj〉V . As the
singular values σj decay to zero as j → ∞, the Picard criterion is only met if the coefficients
〈f, vj〉V decay sufficiently fast.

In case the singular system is given by the Fourier basis, then the coefficents 〈f, vj〉V are just
the Fourier coefficents of f . Therefore, the Picard criterion is a condition on the decay of the
Fourier coefficients which is equivalent to the smoothness of f .

We can now derive a representation of the Moore–Penrose inverse in terms of the singular value
decomposition.

Theorem 2.10. Let K ∈ K(U ,V) with singular system {(σj , vj , uj)}j∈N and f ∈ D(K†). Then
the Moore–Penrose inverse of K can be written as

K†f =
∞∑
j=1

σ−1
j 〈f, vj〉Vuj . (2.9)

Proof. As f ∈ R(K)⊕R(K)⊥ there exist u ∈ N (K)⊥ and g ∈ R(K)⊥ such that f = Ku+ g. As
{uj}j∈N is an orthonormal system of N (K)⊥ we have that

u =

∞∑
j=1

〈u, uj〉Uuj =
∞∑
j=1

σ−1
j 〈u, σjuj〉Uuj =

∞∑
j=1

σ−1
j 〈u,K∗vj〉Uuj

=

∞∑
j=1

σ−1
j 〈Ku, vj〉Uuj =

∞∑
j=1

σ−1
j 〈f − g, vj〉Uuj =

∞∑
j=1

σ−1
j 〈f, vj〉Uuj
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where we used for the last equality that g ∈ R(K)⊥ and vj ∈ R(K).
Moreover, in addition to u ∈ N (K)⊥ we have that u satisfies the normal equation

K∗Ku =

∞∑
j=1

σ2
jσ
−1
j 〈f, vj〉Uuj =

∞∑
j=1

σj〈f, vj〉Uuj = K∗f

and is therefore the minimal norm solution to the inverse problem Ku = f (1.1). With Theorem
2.3 we conclude that u = K†f .

From representation (2.9) we can see what happens in case of noisy measurements. Assume
we are given f δ = f + δvj and denote by u† and u†δ the minimal norm solutions of Ku = f and
Ku = f δ. Then we observe

‖u† − u†δ‖U = ‖K†f −K†f δ‖U = δ‖K†vj‖U =
δ

σj
→∞ for j →∞ .

For static j we see that the amplification of the error δ depends on how small σj is. Hence, the
faster the singular values decay, the stronger the amplification of errors. For that reason, one
distinguishes between three classes of ill-posed problems:

Definition 2.5. We say that an ill-posed inverse problem (1.1) is severely ill-posed if the singular
values decay as σj = O(exp(−j)), where the “Big-O-notation” means that there exists j0 and c > 0
such that for all j ≥ j0 there is σj ≤ c exp(−j). We call the ill-posed inverse problem mildly
ill-posed if it is not severely ill-posed.

Example 2.8. Let us consider the example of differentiation again, as introduced in Section 1.1.2.
The operator K : L2([0, 1]→ L2([0, 1] of the inverse problem (1.1) of differentiation is given as

(Ku)(y) =

∫ y

0
u(x) dx =

∫ 1

0
k(x, y)u(x) dx ,

with k : [0, 1]× [0, 1]→ R defined as

k(x, y) :=

{
1 x ≤ y
0 else

.

This is a special case of the integral operators as introduced in Example 2.6 due to its kernel k
being square integrable and thus K is compact.

In order to compute the singular value decomposition of K we compute its adjoint K∗ first,
which is characterised via

〈Ku, v〉L2([0,1]) = 〈u,K∗v〉L2([0,1]) .

Hence, we obtain

〈Ku, v〉L2([0,1]) =

∫ 1

0

∫ 1

0
k(x, y)u(x) dx v(y) dy =

∫ 1

0
u(x)

∫ 1

0
k(x, y)v(y) dy dx .

Hence, the adjoint operator K∗ is given via

(K∗v)(x) =

∫ 1

0
k(x, y)v(y) dy =

∫ 1

x
v(y) dy . (2.10)
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Now we want to compute the Eigenvalues and Eigenvectors of K∗K, i.e. we look for λ > 0 and
u ∈ L2([0, 1]) with

λu(x) = (K∗Ku)(x) =

∫ 1

x

∫ y

0
u(z) dz dy .

We immediately observe u(1) = 0 and further

λu′(x) =
d

dx

∫ 1

x

∫ y

0
u(z) dz dy = −

∫ x

0
u(z) dz ,

from which we conclude u′(0) = 0. Taking the derivative another time thus yields the ordinary
differential equation

λu′′(x) + u(x) = 0 ,

for which solutions are of the form

u(x) = c1 sin(σ−1x) + c2 cos(σ−1x) ,

with σ :=
√
λ and constants c1, c2. In order to satisfy the boundary conditions u(1) = c1 sin(σ−1)+

c2 cos(σ−1) = 0 and u′(0) = c1 = 0, we chose c1 = 0 and σ such that cos(σ−1) = 0. Hence, we
have

σj =
2

(2j − 1)π
for j ∈ N ,

and by choosing c2 =
√

2 we obtain the following normalised representation of uj :

uj(x) =
√

2 cos

((
j − 1

2

)
πx

)
.

According to (2.6) we further obtain

vj(x) = σ−1
j (Kuj)(x) =

(
j − 1

2

)
π

∫ x

0

√
2 cos

((
j − 1

2

)
πy

)
dy =

√
2 sin

((
j − 1

2

)
πx

)
,

and hence, for f ∈ L2([0, 1]) the Picard criterion becomes

2
∞∑
j=1

σ−2
j

(∫ 1

0
f(x) sin

(
σ−1
j x

)
dx

)2

<∞ .

Thus, the Picard criterion holds if f is differentiable and f ′ ∈ L2([0, 1]).
From the decay of the singular values we see that this inverse problem is mildly ill-posed.
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Regularisation

We have seen in the previous section that the major source of ill-posedness of inverse problems
of the type (1.1) is a fast decay of the singular values of K. An idea to overcome this issue is to
define approximations of K† in the following fashion. Consider the family of operators

Rαf :=
∞∑
j=1

gα(σj)〈f, vj〉V uj , (3.1)

with functions gα : R>0 → R≥0 that converge to 1/σj as α converges to zero. We are going to see
that such an operator Rα is what is called a regularisation (of K†), if gα is bounded, i.e.

gα(σ) ≤ Cα for all σ ∈ R>0. (3.2)

In case (3.2) holds true, we immediately observe

‖Rαf‖2U =

∞∑
j=1

gα(σj)
2|〈f, vj〉V |2 ≤ C2

α

∞∑
j=1

|〈f, vj〉V |2 ≤ C2
α‖f‖2V ,

which means that Cα is a bound for the norm of Rα and thus Rα ∈ L(V,U).

Example 3.1 (Truncated singular value decomposition). As a first example for a spectral regular-
isation of the form (3.1) we want to consider the so-called truncated singular value decomposition.
As the name suggests, the idea is to discard all singular values below a certain threshold α

gα(σ) =

{
1
σ σ ≥ α
0 σ < α

. (3.3)

Note that for all σ > 0 we naturally obtain limα→0 gα(σ) = 1/σ. Equation (3.1) then reads as

Rαf =
∑
σj≥α

1

σj
〈f, vj〉V uj , (3.4)

for all f ∈ V. Note that (3.4) is always well-defined (i.e. finite) for α > 0 as zero is the only
accumulation point of singular vectors of compact operators. From (3.3) we immediately observe
gα(σ) ≤ 1/α so that ‖Rα‖L(U ,V) ≤ 1/α.

31
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U V

δu† f
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K†f δ
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Figure 3.1: Visualization of reconstruction from noisy data. While the Moore–Penrose inverse recon-
structs optimally from noiseless data, its noise amplification renders it useless when small errors are present
in the data. A regularisation operator gives a robust solution while still approximating the Moore–Penrose
inverse.

Example 3.2 (Tikhonov regularisation). The main idea behind Tikhonov regularisation1 is to
shift the singular values of K∗K by a constant factor, which will be associated with the regulari-
sation parameter α. This shift can be realised via the function

gα(σ) =
σ

σ2 + α
. (3.5)

Again, we immediately observe that for all σ > 0 we have limα→0 gα(σ) = 1/σ. Further, we can
estimate gα(σ) ≤ 1/(2

√
α) due to σ2 + α ≥ 2

√
ασ. The corresponding Tikhonov regularisation

(3.1) reads as

Rαf =
∞∑
j=1

σj
σ2
j + α

〈f, vj〉V uj . (3.6)

After getting an intuition about regularisation of the form (3.1) via examples, we want to
define what a regularisation actually is, and what properties come along with it.

Definition 3.1. Let K ∈ L(U ,V) be a bounded operator. A family {Rα}α>0 of continuous opera-
tors is called regularisation (or regularisation operator) of K† if

Rαf → K†f = u†

for all f ∈ D(K†) as α→ 0.

Definition 3.2. We further call {Rα}α>0 a linear regularisation, if Definition 3.1 is satisfied
together with the additional assumption

Rα ∈ L(V,U) ,

for all α ∈ R>0.

Hence, a regularisation is a pointwise approximation of the Moore–Penrose inverse with con-
tinuous operators, see Figure 3.1 for an illustration. As in the interesting cases the Moore–Penrose
inverse may not be continuous we cannot expect that the norms of a regularisation stay bounded
as α→ 0. This is confirmed by the following results.

1Named after the Russian mathematician Andrey Nikolayevich Tikhonov (30 October 1906 - 7 October 1993)
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Theorem 3.1 (Banach–Steinhaus e.g. [4, p. 78], [16, p. 173]). Let U ,V be Hilbert spaces and
{Kj}j∈N ⊂ L(U ,V) a family of point-wise bounded operators, i.e. for all u ∈ U there exists a
constant C(u) > 0 with supj∈N ‖Kju‖V ≤ C(u). Then

sup
j∈N
‖Kj‖L(U ,V) <∞ .

Corollary 3.1 ([16, p. 174]). Let U ,V be Hilbert spaces and {Kj}j∈N ⊂ L(U ,V). Then the
following two conditions are equivalent:

(a) There exists K ∈ L(U ,V) such that

Ku = lim
j→∞

Kju for all u ∈ U .

(b) There is a dense subset X ⊂ U such that limj→∞Kju exists for all u ∈ X and

sup
j∈N
‖Kj‖L(U ,V) <∞ .

Theorem 3.2. Let U , V be Hilbert spaces, K ∈ L(U ,V) and {Rα}α>0 a liner regularisation as
defined in Definition 3.2. If K† is not continuous, {Rα}α>0 cannot be uniformly bounded. In
particular this implies the existence of an element f ∈ V with ‖Rαf‖U →∞ for α→ 0.

Proof. We prove the theorem by contradiction and assume that {Rα}α>0 is uniformly bounded.
Hence, there exists a constant C with ‖Rα‖L(V,U) ≤ C for all α > 0. Due to Definition 3.1, we have
Rα → K† on D(K†). Corollary 3.1 then already implies K† ∈ L(V,U), which is a contradiction
to the assumption that K† is not continuous.

It remains to show the existence of the element f ∈ V with ‖Rαf‖U → ∞ for α → 0. If
such an element would not exist, we could conclude {Rα}α>0 ⊂ L(V,U). However, Theorem 3.1
then implies that {Rα}α>0 has to be uniformly bounded, which contradicts the first part of the
proof.

With the additional assumption that ‖KRα‖L(V,V) is bounded, we can even show that Rαf
diverges for all f 6∈ D(K†).

Theorem 3.3. Let K ∈ L(U ,V) and {Rα}α>0 be a linear regularisation of K†, and define uα :=
Rαf . If

sup
α>0
‖KRα‖L(V,V) <∞ ,

then ‖uα‖U →∞ for f /∈ D(K†).

Proof. The convergence in case of f ∈ D(K†) simply follows from Definition 3.1. We therefore
only need to consider the case f /∈ D(K†). We assume that there exists a sequence αk → 0 such
that ‖uαk‖U is uniformly bounded. Then there exists a weakly convergent subsequence uαkl with
some limit u ∈ U , cf. [7, Section 2.2, Theorem 2.1]. As continuous linear operators are also weakly
continuous, we further have Kuαkl ⇀ Ku. However, as KRα are uniformly bounded operators,
we also conclude Kuαkl = KRαklf ⇀ PR(K)

f for all f ∈ V (and not just f ∈ D(K†)), because of
Corollary 3.1. Hence, we further conclude f ∈ R(K) and therefore f ∈ D(K†) in contradiction to
the assumption f /∈ D(K†).
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highlow regularisation
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data error
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Figure 3.2: The total error between a regularised solution and the minimal norm solution decomposes
into the data error and the approximation error. These two errors have opposing trends: For a small
regularisation parameter α the error in the data gets amplified through the ill-posedness of the problem
and for large α the operator Rα is a poor approximation of the Moore–Penrose inverse.

Usually we cannot expect f ∈ D(K†) for most applications, due to measurement and modelling
errors. However, we assume that there exists f ∈ D(K†) such that we have∥∥∥f − f δ∥∥∥

V
≤ δ

for measured data f δ ∈ V. For linear regularisations we can split the total error between the
regularised solution of the noisy problem Rαf

δ and the minimal norm solution of the noise-free
problem u† = K†f as

‖Rαf δ − u†‖U ≤ ‖Rαf δ −Rαf‖U + ‖Rαf − u†‖U
≤ δ‖Rα‖L(V,U)︸ ︷︷ ︸

data error

+ ‖Rαf −K†f‖U︸ ︷︷ ︸
approximation error

. (3.7)

The first term of (3.7) is the data error ; this term unfortunately does not stay bounded for α→ 0,
which we can conclude from Theorem 3.2. The second term, known as the approximation error,
however vanishes for α → 0, due to the pointwise convergence of Rα to K†. Hence it becomes
evident from (3.7) that a good choice of α depends on δ, and needs to be chosen such that the
approximation error becomes as small as possible, whilst the data error is being kept at bay. See
Figure 3.2 for a visualisation of this situation. In the following we are going to discuss typical
strategies for choosing α appropriately.

3.1 Parameter-choice strategies

In this section we want to discuss three standard rules for the choice of the regularisation parameter
α and whether they lead to (convergent) regularisation methods.
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Definition 3.3. A function α : R>0×V → R>0, (δ, f δ) 7→ α(δ, f δ) is called parameter choice rule.
We distinguish between

(a) a-priori parameter choice rules, if they depend on δ only;

(b) a-posteriori parameter choice rules, if they depend on δ and f δ;

(c) heuristic parameter choice rules, if they depend on f δ only.

In case of (a) or (c) we would simply write α(δ), respectively α(f δ), instead of α(δ, f δ).

Definition 3.4. If {Rα}α>0 is a regularisation of K† and α is a parameter choice rule, then the
pair (Rα, α) is called convergent regularisation, if for all f ∈ D(K†) there exists a parameter
choice rule α : R>0 × V → R>0 such that

lim
δ→0

sup
{∥∥∥Rαf δ −K†f∥∥∥U ∣∣∣ f δ ∈ V, ∥∥∥f − f δ∥∥∥V ≤ δ} = 0 (3.8)

and

lim
δ→0

sup
{
α(δ, f δ)

∣∣∣ f δ ∈ V, ∥∥∥f − f δ∥∥∥
V
≤ δ

}
= 0 (3.9)

are guaranteed.

3.1.1 A-priori parameter choice rules

First of all we want to discuss a-priori parameter choice rules in more detail. In fact, it can
be shown that for every regularisation an a-priori parameter choice rule, and thus, a convergent
regularisation, exists.

Theorem 3.4. Let {Rα}α>0 be a regularisation of K†, for K ∈ L(U ,V). Then there exists an
a-priori parameter choice rule, such that (Rα, α) is a convergent regularisation.

Proof. Let f ∈ D(K†) be arbitrary but fixed. We can find a monotone increasing function γ :
R>0 → R>0 with limε→0 γ(ε) = 0 such that for every ε > 0 we have∥∥∥Rγ(ε)f −K†f

∥∥∥
U
≤ ε

2
,

due to the pointwise convergence Rα → K†.
As the operator Rγ(ε) is continuous for fixed ε, there exists ρ(ε) > 0 with∥∥Rγ(ε)g −Rγ(ε)f

∥∥
U ≤

ε

2
for all g ∈ V with ‖g − f‖V ≤ ρ(ε) .

Without loss of generality we can assume ρ to be a continuous, strictly monotone increasing
function with limε→0 ρ(ε) = 0. Then, due to the inverse function theorem there exists a strictly
monotone and continuous function ρ−1 on R(ρ) with limδ→0 ρ

−1(δ) = 0. We continuously extend
ρ−1 on R>0 and define our a-priori strategy as

α : R>0 → R>0, δ → γ(ρ−1(δ)) .

Then limδ→0 α(δ) = 0 follows. Furthermore, there exists δ := ρ(ε) for all ε > 0, such that with
α(δ) = γ(ε) ∥∥∥Rα(δ)f

δ −K†f
∥∥∥
U
≤
∥∥∥Rγ(ε)f

δ −Rγ(ε)f
∥∥∥
U

+
∥∥∥Rγ(ε)f −K†f

∥∥∥
U
≤ ε

follows for all f δ ∈ V with ‖f−f δ‖V ≤ δ. Thus, (Rα, α) is a convergent regularisation method.
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For linear regularisations we can characterise a-priori parameter choice strategies that lead to
convergent regularisation methods via the following theorem.

Theorem 3.5. Let {Rα}α>0 be a linear regularisation, and α : R>0 → R>0 an a-priori parameter
choice rule. Then (Rα, α) is a convergent regularisation method if and only if

(a) limδ→0 α(δ) = 0

(b) limδ→0 δ‖Rα(δ)‖L(V,U) = 0

Proof. ⇐: Let condition a) and b) be fulfilled. From (3.7) we then observe∥∥∥Rα(δ)f
δ −K†f

∥∥∥
U
→ 0 for δ → 0.

Hence, (Rα, α) is a convergent regularisation method.
⇒: Now let (Rα, α) be a convergent regularisation method. We prove that conditions 1 and 2
have to follow from this by showing that violation of either one of them leads to a contradiction to
(Rα, α) being a convergent regularisation method. If condition a) is violated, (3.9) is violated and
hence, (Rα, α) is not a convergent regularisation method. If condition a) is fulfilled but condition
b) is violated, there exists a null sequence {δk}k∈N with δk‖Rα(δk)‖L(V,U) ≥ C > 0, and hence,
we can find a sequence {gk}k∈N ⊂ V with ‖gk‖V = 1 and δk‖Rα(δk)gk‖U ≥ C̃ for some C̃. Let
f ∈ D(K†) be arbitrary and define fk := f + δkgk. Then we have on the one hand ‖f − fk‖V ≤ δk,
but on the other hand the norm of

Rα(δk)fk −K†f = Rα(δk)f −K†f + δkRα(δk)gk

cannot converge to zero, as the second term δkRα(δk)gk is bounded from below by construction.
Hence, (3.8) is violated for f δ = gk and thus, (Rα, α) is not a convergent regularisation method.

3.1.2 A-posteriori parameter choice rules

In the following sections we are going to see that Theorem 3.5 basically means that α(δ) cannot
converge too quickly to zero in relation to δ; typical parameter choice strategies will be of the
form α(δ) = δp. However, finding an optimal choice of p often requires additional information
about u†, for instance in terms of source conditions that we are going to discuss in Section 3.2.4.
A-posteriori parameter choice rules have the advantage that they do not require this additional
information. The basic idea is as follows. We again have f ∈ D(K†) and f δ with ‖f − f δ‖V ≤ δ,
and now consider the residual between f δ and uα := Rαf

δ, i.e.

‖Kuα − f δ‖V .

If we assume that u† is the minimal norm solution and f is given via f = Ku†, we immediately
observe that u† satisfies

‖Ku† − f δ‖V = ‖f − f δ‖V = δ .

Hence, it appears not to be useful to choose α(δ, f δ) with ‖Kuα(δ,fδ)− f δ‖V < δ, which motivates
Morozov’s discrepany principle.
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Definition 3.5 (Morozov’s discrepancy principle). Let α(δ, f δ) be chosen such that

‖Kuα(δ,fδ) − f δ‖V ≤ ηδ (3.10)

is satisfied, for given δ, f δ, and a fixed constant η > 1. Then uα(δ,fδ) = Rα(δ,fδ)f
δ is said to satisfy

Morozov’s discrepancy principle.

Remark 3.1. It is important to point out that (3.10) may never be fulfilled, as is the case for
f ∈ R(K)⊥. Following Lemma 2.3 (d), even for exact data f δ = f we observe

‖Ku† − f‖V = ‖KK†f − f‖V = ‖PR(K)
f − f‖V = ‖f‖V > δ

in this case, for δ being small enough. In order to avoid this scenario, we ideally ensure that R(K)
is dense in V, as this already implies R(K)⊥ = {0} due to Remark 2.1.

Practical a-posteriori regularisation strategies are usually designed as follows. We pick a null
sequence {αj}j∈N and iteratively compute uαj = Rαjf

δ for j ∈ {1, . . . , j∗}, j∗ ∈ N, until uαj∗
satisfies (3.10). This procedure is justified by the following theorem.

Theorem 3.6. Let {Rα}α>0 be a regularisation of K ∈ L(U ,V), and let R(K) be dense in V.
Further, let {αj}j∈N be a strictly monotonically decreasing null sequence, and let η > 1. If the
family of operators {KRα}α>0 is uniformly bounded, there exists a finite index j∗ ∈ N such that
for all f ∈ D(K†) and f δ with ‖f − f δ‖V ≤ δ the inequalities

‖Kuαj∗ − f δ‖V ≤ µδ < ‖Kuαj − f δ‖V
are satisfied for all j < j∗.

Proof. We know that KRα converges pointwise to KK† = PR(K)
in D(K†), which together with

the uniform boundedness assumption already implies pointwise convergence in V, as we have
already shown in the proof of Theorem 3.2. Hence, for all f ∈ D(K†) and f δ ∈ V with ‖f−f δ‖V ≤ δ
we can conclude

lim
j→∞

‖Kuαj − f δ‖V = lim
j→∞

‖KRαjf δ − f δ‖V =
∥∥∥PR(K)

f δ − f δ
∥∥∥
V

= inf
g∈R(K)

‖g − f δ‖V ≤ ‖f − f δ‖V ≤ δ .

We are going to demonstrate later that (3.10) in combination with specific regularisations is
indeed a regularisation method. Before we do so, we want to conclude the discussion of parameter
choice strategies by investigating heuristic regularisation methods.

3.1.3 Heuristic parameter choice rules

Heuristic parameter choice rules do not require knowledge of the noise level δ, which makes them
popular strategies in practice. In the following we give three examples of popular heuristic param-
eter choice rules.

Quasi-optimality principle For the first n elements of a null sequence, i.e. {αj}j∈{1,...,n}, we
choose α(f δ) = αj∗ with

αj∗ = arg min
1≤j<n

‖uαj+1 − uαj‖U .
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Hanke-Raus rule The parameter α(f δ) is chosen via

α(f δ) = arg min
α>0

1√
α
‖Kuα − f δ‖V .

L-curve method The parameter α(f δ) is chosen via

α(f δ) = arg min
α>0

‖uα‖U‖Kuα − f δ‖V .

Despite their popularity and the fact that they do not require any knowledge about δ, heuristic
parameter choice rules have one significant theoretical disadvantage. While any regularisation can
be equipped with an a-priori parameter choice rule to form a convergent regularisation as seen in
Theorem 3.4, heuristic parameter choice rules cannot lead to convergent regularisations, a result
that has become famous as the so-called Bakushinskĭı veto [2].

Theorem 3.7. Let K ∈ L(U ,V) with R(K) 6= R(K). Then for any regularisation {Rα}α>0 and
any heuristic parameter choice rule α(f δ) the pair ({Rα}, α) is not a convergent regularisation.

Proof. Assume that ({Rα}, α) is a convergent regularisation method and that the parameter choice
rule is heurstic, i.e. α = α(f δ). Then it follows from (3.8) that

lim
δ→0

sup
{∥∥∥Rα(fδ)f

δ −K†f
∥∥∥
U

∣∣∣ f δ ∈ V, ∥∥∥f − f δ∥∥∥
V
≤ δ

}
= 0

and in particular Rα(f)f = K†f for all f ∈ D(K†). Thus, for any sequence {fj}j∈N ⊂ D(K†)
which converges to f ∈ D(K†) we have that

lim
j→∞

K†fj = lim
j→∞

Rα(fj)fj = K†f

which shows that K† is continuous. It follows from Theorem 2.5 that the range of K is closed,
which contradicts the assumption.

Remark 3.2. We want to point out that Theorem 3.7 does not automatically make any heuristic
parameter choice rule useless, for two reasons. Firstly, because Theorem 3.7 applies to infinite
dimensional problems. Hence, discretised, ill-conditioned problems can still benefit from heuristic
parameter choice rules. Secondly, the proof of Theorem 3.7 explicitly uses perturbed data fj ∈
D(K†) to show the contradiction. For actual perturbed data f δ however, it is quite unusual that
they will satisfy f δ ∈ D(K†). It can indeed be shown that, under the additional assumption
f δ 6∈ D(K†), a lot of regularisation strategies together with a whole class of heuristic parameter
choice strategies can be turned into convergent regularisations.

3.2 Spectral regularisation methods

Now we revisit (3.1) and finally prove that these methods are regularisation methods for piecewise
continuous functions gα satisfying (3.2).

Theorem 3.8. Let gα : R>0 → R be a piecewise continuous function satisfying (3.2), limα→0 gα(σ) =
1
σ and

sup
α,σ

σgα(σ) ≤ γ , (3.11)
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for some constant γ > 0. If Rα is defined as in (3.1), we have

Rαf → K†f as α→ 0,

for all f ∈ D(K†).

Proof. From the singular value decomposition of K† and the definition of Rα we obtain

Rαf −K†f =
∞∑
j=1

(
gα(σj)−

1

σj

)
〈f, vj〉V uj =

∞∑
j=1

(σjgα(σj)− 1) 〈u†, uj〉U uj .

From (3.11) we can conclude∣∣∣(σjgα(σj)− 1) 〈u†, uj〉U
∣∣∣ ≤ (1 + γ)‖u†‖U ,

and hence, each element of the sum stays bounded. Thus, we can also estimate

‖Rαf −K†f‖2U =
∞∑
j=1

|σjgα(σj)− 1|2
∣∣∣〈u†, uj〉U ∣∣∣2 ≤ (1 + γ)2

∞∑
j=1

∣∣∣〈u†, uj〉U ∣∣∣2
= (1 + γ)2‖u†‖2U <∞

and conclude that ‖Rαf − K†f‖U is bounded from above. This allows the application of the
reverse Fatou lemma, which yields the estimate

lim sup
α→0

∥∥∥Rαf −K†f∥∥∥2

U
≤ lim sup

α→0

∞∑
j=1

|σjgα(σj)− 1|2
∣∣∣〈u†, uj〉U ∣∣∣2

≤
∞∑
j=1

∣∣∣ lim
α→0

σjgα(σj)− 1
∣∣∣2 ∣∣∣〈u†, uj〉U ∣∣∣2 .

Due to the pointwise convergence of gα(σj) to 1/σj we obtain limα→0 σjgα(σj) − 1 = 0. Hence,
we have

∥∥Rαf −K†f∥∥U → 0 for α→ 0 for all f ∈ D(K†).

Proposition 3.1. Let the same assumptions hold as in Theorem 3.8. Further, let α be an a-priori
parameter choice rule. Then (Rα(δ), α(δ)) is a convergent regularisation method if

lim
δ→0

δCα(δ) = 0

is guaranteed.

Proof. The result follows immediately from ‖Rα(δ)‖L(V,U) ≤ Cα(δ) and Theorem 3.5.

3.2.1 Convergence rates

Knowing that spectral regularisation methods of the form (3.1) together with (3.2) represent con-
vergent regularisation methods, we now want to understand how the error in the data propagates
to the error in the reconstruction.
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Theorem 3.9. Let the same assumptions hold for gα as in Theorem 3.8. If we define uα := Rαf
and uδα := Rαf

δ, with f ∈ D(K†), f δ ∈ V and ‖f − f δ‖V ≤ δ, then

‖Kuα −Kuδα‖V ≤ γδ , (3.12)

and

‖uα − uδα‖U ≤ Cαδ (3.13)

hold true.

Proof. From the singular value decomposition we can estimate

‖Kuα −Kuδα‖2V ≤
∞∑
j=1

σ2
j gα(σj)

2|〈f − f δ, vj〉V |2

≤ γ2
∞∑
j=1

|〈f − f δ, vj〉V |2 = γ2‖f − f δ‖2V ≤ γ2δ2 ,

which yields (3.12). In the same fashion we can estimate

‖uα − uδα‖2U ≤
∞∑
j=1

gα(σj)
2|〈f − f δ, vj〉V |2

≤ C2
α

∞∑
j=1

|〈f − f δ, vj〉V |2 = C2
α‖f − f δ‖2V ≤ C2

αδ
2 ,

to obtain (3.13).

Remark 3.3. At first glance (3.13) gives the impression as if the error in the reconstruction is
also of order δ. This, however, is not the case, as Cα also depends on δ, as we have seen in
Proposition 3.1. The condition limδ→0 δCα = 0 will in particular force Cα to decay more quickly
than δ. Hence, Cαδ will be of order δν , with 0 < ν < 1.

Combining the assertions of Theorem 3.8, Proposition 3.1 and Theorem 3.9, we obtain the
following convergence results of the regularised solutions.

Proposition 3.2. Let the assumptions of Theorem 3.8, Proposition 3.1 and Theorem 3.9 hold
true. Then,

uα(δ) → u†

is guaranteed as δ → 0.

3.2.2 Truncated singular value decomposition

As a first example for a spectral regularisation of the form (3.1) we have considered the so-
called truncated singular value decomposition in Example 3.1. From (3.3) we immediately observe
gα(σ) ≤ Cα = 1/α. Thus, according to Proposition 3.1 the truncated singular value decomposition,
together with an a-priori parameter choice strategy satisfying limδ→0 α(δ) = 0, is a convergent
regularisation method if limδ→0 δ/α(δ) = 0.
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Moreover, we observe supσ,α σgα(σ) = γ = 1 and hence, we obtain the error estimates ‖Kuα−
Kuδα‖V ≤ δ and ‖uα − uδα‖U ≤ δ/α(δ) as a consequence of Theorem 3.9.

Let K ∈ K(U ,V) with singular system {σj , uj , vj)}j∈N, and choose for δ > 0 an index function
j∗ : R>0 → N with j∗(δ)→∞ for δ → 0 and limδ→0 δ/σj∗(δ) = 0. We can then choose α(δ) = σj∗(δ)
as our a-priori parameter choice rule to obtain a convergent regularisation.

Note that in practice a larger δ implies that more and more singular values have to be cut off
in order to guarantee a stable recovery that successfully suppresses the data error.

3.2.3 Tikhonov regularisation

The second example we were considering was Tikhonov regularisation in Example 3.2, where we
have shifted the singular values of K∗K by a constant factor, which will be associated with the
regularisation parameter α.

In case of gα as defined in (3.5) we observe limα→0 gα(σ) = 1/σ for σ > 0. Further, we
can estimate gα(σ) ≤ 1/(2

√
α) = Cα due to σ2 + α ≥ 2

√
ασ. Moreover, we discover σgα(σ) =

σ2/(σ2 + α) < 1 =: γ for α > 0. Consequently, we have to ensure δ/(2
√
α(δ)) → 0 for δ → 0 to

obtain a convergent regularisation, and in that case get the estimates ‖Kuα − Kuδα‖V ≤ δ and
‖uα− uδα‖U ≤ δ/(2

√
α(δ)). Thus, equipping Rα(δ) for instance with the a-priori parameter choice

rule α(δ) = δ/4 will lead to a convergent regularisation for which we have ‖uα − uδα‖U = O(
√
δ).

Note that Tikhonov regularisation can be computed without knowledge of the singular system.
Considering the equation (K∗K +αI)uα in terms of the singular value decomposition, we observe

∞∑
j=1

σj
σ2
j + α

〈f, vj〉V K∗ Kuj︸︷︷︸
=σjvj︸ ︷︷ ︸

=σ2
juj

+

∞∑
j=1

ασj
σ2
j + α

〈f, vj〉V uj

=
∞∑
j=1

σj(σ
2
j + α)

σ2
j + α

〈f, vj〉V uj =
∞∑
j=1

σj〈f, vj〉V uj = K∗f .

Hence, the Tikhonov-regularised solution uα can be obtained by solving

(K∗K + αI)uα = K∗f (3.14)

for uα. The advantage in computing uα via (3.14) is that its computation does not require the
singular value decomposition of K, but only involves the inversion of a linear, well-posed operator
equation with a symmetric, positive definite operator.

3.2.4 Source-conditions

Before we continue to investigate other examples of regularisations we want to briefly address
the question of the convergence speed of a regularisation method. From Theorem 3.9 we have
already obtained a convergence rate result; however, with additional regularity assumptions on
the (unknown) minimal norm solution we are able to improve those. The regularity assumptions
that we want to consider are known as source conditions, and are of the form

∃w ∈ U : u† = (K∗K)µw . (3.15)
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The power µ > 0 of the operator is understood in the sense of the consider the µ-th power of the
singular values of the operator K∗K, i.e.

(K∗K)µw =
∞∑
j=1

σ2µ
j 〈w, uj〉Uuj .

Example 3.3 (Differentiation). We want to take a look at what (3.15) actually means in the case
of a specific example. We therefore again consider the inverse problem of differentiation, i.e.

(Ku)(y) =

∫ y

0
u(x) dx .

In case of µ = 1 (3.15) reads as

u†(x) =

∫ 1

x

∫ y

0
w(z) dz dy .

due to (2.10). Hence, (3.15) does simply imply that u† has to be twice weakly differentiable. It
becomes even more obvious if we look at twice differentiable u†. In that case applying the Leibniz
differentiation rule for parameter integrals leaves us with

(u†)′′(x) = −w(x) .

Hence, any twice differentiable u† automatically satisfies the source condition (3.15) for µ = 1.
Similar results follow for different choices of µ ∈ N.

The rate of convergence of a regularisation scheme to the minimal norm solution now depends
on the specific choice of gα. We assume that gα satisfies

σ2µ|σgα(σ)− 1| ≤ ωµ(α) ,

for all σ > 0. In case of the truncated singular value decomposition we would for instance have
ωµ(α) = α2µ. With this additional assumption, we can improve the estimate in Theorem 3.8 as
follows:

‖Rαf −K†f‖2V ≤
∞∑
j=1

|σjgα(σj)− 1|2|〈u†, uj〉U |2

=

∞∑
j=1

|σjgα(σj)− 1|2σ4µ
j |〈w, uj〉U |2

≤ ωµ(α)2‖w‖2U

Hence, we have obtained the estimate

‖uα − u†‖U ≤ ωµ(α)‖w‖U .

Together with (3.7) we can further estimate

‖uα(δ) − u†‖U ≤ ωµ(α)‖w‖U + Cαδ . (3.16)
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Example 3.4. In case of the truncated singular value decomposition we know from Section 3.2.2
that Cα = 1/α, and we can further conclude ωµ(α) = α2µ. Hence, (3.16) simplifies to

‖uα(δ) − u†‖U ≤ α2µ‖w‖U + δα−1 (3.17)

in this case. In order to make the right-hand-side of (3.17) as small as possible, we have to choose
α such that

α =

(
δ

2µ‖w‖U

) 1
2µ+1

.

With this choice of α we estimate

‖uα(δ) − u†‖U ≤ 2
1−2µ
1+2µ︸ ︷︷ ︸
≤2

µ
1−2µ
1+2µ︸ ︷︷ ︸
≤1

δ
2µ

2µ+1 ‖w‖
1

2µ+1

U

≤ 2δ
2µ

2µ+1 ‖w‖
1

2µ+1

U .

It is important to note that no matter how large µ is, the rate of convergence δ
2µ

2µ+1 will always be
slower than δ, due to the ill-posedness of the inversion of K.

3.2.5 Asymptotic regularisation

Another form of regularisation is asymptotic regularisation of the form

∂tu(t) = K∗ (f −Ku(t))

u(0) = 0
. (3.18)

As the linear operator K does not change with respect to the time t, we can make the Ansatz of
writing u(t) in terms of the singular value decomposition of K as

u(t) =
∞∑
j=1

γj(t)uj , (3.19)

for some function γ : R→ R. From the initial conditions we immediately observe γ(0) = 0. From
the singular value decomposition and (3.18) we further see

∞∑
j=1

γ′j(t)uj =
∞∑
j=1

σj

〈f, vj〉V − σjγ(t) 〈uj , uj〉U︸ ︷︷ ︸
=‖uj‖2U=1

uj .

Hence, by equating the coefficients we get

γ′j(t) = σj〈f, vj〉V − σ2
j γj(t) ,

and together with γj(0) we obtain

γj(t) =
(

1− e−σ2
j t
) 1

σj
〈f, vj〉V
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as a solution for all j and hence, (3.19) reads as

u(t) =

∞∑
j=1

(
1− e−σ2

j t
) 1

σj
〈f, vj〉Vuj .

If we substitute t = 1/α, we obtain the regularisation

uα =
∞∑
j=1

(
1− e−

σ2j
α

)
1

σj
〈f, vj〉Vuj

with gα(σ) =

(
1− e−σ

2

α

)
1
σ . We immediately see that gα(σ)σ ≤ 1 =: γ, and due to ex ≥

1 + x we further observe 1 − e−σ
2

α ≤ σ2/α and therefore (1 − e−σ
2

α )/σ ≤ maxj σj/α = σ1/α =
‖K‖L(U ,V)/α =: Cα.

3.2.6 Landweber iteration

If we approximate (3.18) via a forward finite-difference discretisation, we end up with the iterative
procedure

uk+1 − uk
τ

= K∗
(
f −Kuk

)
, (3.20)

⇔ uk+1 = uk + τK∗
(
f −Kuk

)
,

⇔ uk+1 = (I − τK∗K)uk + τK∗f ,

for some τ > 0 and u0 ≡ 0. Iteration (3.20) is known as the so-called Landweber iteration. We
assume f ∈ D(K†) first, and with the singular value decomposition of K and K∗ we obtain

∞∑
j=1

〈uk+1, uj〉Uuj =
∞∑
j=1

((
1− τσ2

j

)
〈uk, uj〉U + τσj〈f, vj〉V

)
uj , (3.21)

and hence, by equating the individual summands

〈uk+1, uj〉U =
(
1− τσ2

j

)
〈uk, uj〉U + τσj〈f, vj〉V . (3.22)

Assuming u0 ≡ 0, summing up equation (3.22) yields

〈uk, uj〉U = τσj〈f, vj〉V
k∑
i=1

(1− τσ2
j )
k−i . (3.23)

The following Lemma will help us simplifying (3.23).

Lemma 3.1. For k ∈ N \ {1} we have

k∑
i=1

(1− τσ2)k−i =
1−

(
1− τσ2

)k
τσ2

. (3.24)
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Proof. Equation (3.24) can simply be verified via induction. We immediately see that
2∑
i=1

(1− τσ2)2−i = 1 + (1− τσ2) =
1− (1− 2τσ2 + τ2σ4)

τσ2
=

1−
(
1− τσ2

)2
τσ2

serves as as our induction base. Considering k → k + 1, we observe
k+1∑
i=1

(1− τσ2)k+1−i = 1 +
k∑
i=1

(1− τσ2)k+1−i

= 1 + (1− τσ2)

k∑
i=1

(1− τσ2)k−i

= 1 + (1− τσ2)
1−

(
1− τσ2

)k
τσ2

=
1−

(
1− τσ2

)k+1

τσ2
,

and we are done.

If we now insert (3.24) into (3.23) we therefore obtain

〈uk, uj〉U =
(

1− (1− τσ2
j )
k
) 1

σj
〈f, vj〉V . (3.25)

The important consequence of Equation (3.25) is that we now immediately see that 〈uk, uj〉U →
〈u†, uj〉U if we ensure (1− τσ2

j )
k → 0. In other words, we need to choose τ such that |1− τσ2

j | < 1
(respectively 0 < τσj < 2) for all j. As in the case of asymptotic regularisation we exploit that
σ1 = ‖K‖L(U ,V) > σj for all j and select τ such that

0 < τ <
2

‖K‖2L(U ,V)

(3.26)

is satisfied. If we interpret the iteration number as the regularisation parameter α := 1/k, we
obtain the regularisation method

uα = Rαf =
∞∑
j=1

(
1−

(
1− τσ2

j

) 1
α

) 1

σj
〈f, vj〉V

with gα(σ) =
(

1− (1− τσ2)
1
α

)
/σ.

Landweber Iteration & the discrepancy principle

To conclude this section on the Landweber iteration we want to prove convergence rates given
u† satisfies a source condition. We further want to demonstrate that Landweber iteration in
combination with the a-posteriori parameter choice rule defined in Definition 3.5 is a sensible
strategy that ensures uk → u† as long as the discrepancy principle is violated. Following the
introduction of the source condition in Section 3.2.4, we want to assume a source condition similar
(3.15) for µ = 1/2, i.e. there exists a w ∈ V such that

u† = K∗w (3.27)

is satisfied. Under that additional assumption we can conclude the following convergence rate in
the case of noise-free data f δ = f .
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Lemma 3.2. Let (3.27) be satisfied. Then the Landweber iterates (3.20) satisfy

‖uk − u†‖U = O
(

1√
k

)
= O

(√
α
)
,

for f = Ku†.

Proof. We start proving this statement by showing that the inner product of uk−u† with a singular
vector uj simplifies to

〈uk − u†, uj〉U = 〈uk, uj〉U − 〈u†, uj〉U
=
(

1− (1− τσ2
j )
k
)
〈u†, uj〉U − 〈u†, uj〉U

= (1− τσ2
j )
k〈u†, uj〉U

= σj(1− τσ2
j )
k︸ ︷︷ ︸

=:r(σj)

〈w, uj〉U ,

with the second equality following from Equation (3.25). As our next step, we want to find an
upper bound for r(σj). We therefore analyse the concave function r(σ) = σ(1−τσ2)k by computing
its first derivative, setting it to zero and inserting the resulting argument that maximises r. This
yields

max
σ

r(σ) =

(
2k

2k+1

)k
√
τ(2k + 1)

≤ 1√
τ(2k + 1)

for k ∈ N. Hence, we obtain the estimate∣∣∣〈uk − u†, uj〉U ∣∣∣ ≤ |〈w, uj〉U |√
τ(2k + 1)

,

and consequently

‖uk − u†‖U =

√√√√ ∞∑
j=1

|〈uk − u†, uj〉U |2 ≤
1√

τ(2k + 1)

√√√√ ∞∑
j=1

|〈w, uj〉U |2 =
‖w‖U√
τ(2k + 1)

.

Together with the stepsize-constraint (3.26) we can further conclude convergence of the iterates
to a least squares solution.

Lemma 3.3. Let (3.26) be satisfied. Then the iterates (3.20) satisfy

‖Kuk+1 − f‖V ≤ ‖Kuk − f‖V ,

for f = Ku† and all k ∈ N, where equality only holds if uk already satisfies the normal equation
(2.3).
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Proof. We easily estimate

‖Kuk+1 − f‖2V = ‖K(I − τK∗K)uk − (I − τK∗)f‖2V
= ‖Kuk − f − τKK∗(Kuk − f)‖2V
= ‖Kuk − f‖2V − 2τ〈K∗(Kuk − f),K∗(Kuk − f)〉U + τ2‖KK∗(Kuk − f)‖2V
= ‖Kuk − f‖2V + τ

(
τ‖KK∗(Kuk − f)‖2V − 2‖K∗(Kuk − f)‖2U

)
≤ ‖Kuk − f‖2V + τ‖K∗(Kuk − f)‖2U

(
τ‖K‖2L(U ,V) − 2

)
︸ ︷︷ ︸

<0

≤ ‖Kuk − f‖2V ,

which proves the statement.

Lemma 3.2 and Lemma 3.3 allow us to conclude the following proposition.

Proposition 3.3. The Landweber iteration is a linear regularisation in the sense of Definition
3.2.

In order to show that the Landweber iteration (3.20) in combination with the discrepancy
principle (3.10) is also a convergent regularisation, we obviously have to look at the case of noisy
data f δ with ‖f δ − f‖V ≤ δ for f = Ku†. We denote the solution of (3.20) in case of noisy data
f δ as ukδ for all k ∈ N and obtain the following estimate for the norm between ukδ and u†.

Lemma 3.4. Let (3.27) be satisfied. Then the Landweber iterates (3.20) satisfy

‖ukδ − u†‖U ≤ τkδ‖K‖L(U ,V) +
‖w‖U√
τ(2k − 1)

(3.28)

for k ∈ N \ {1}, f = Ku†, f δ ∈ V and ‖f δ − f‖V ≤ δ.

Proof. Similar to the proof of Lemma 3.2 we consider the inner product between ukδ − u† and a
singular vector uj , which yields

〈ukδ − u†, uj〉U =
1

σj

((
1− (1− τσ2

j )
k
)
〈f δ, vj〉V − 〈f, vj〉V

)
=

1

σj

(
1− (1− τσ2

j )
k
)
〈f δ − f, vj〉V − σj(1− τσ2

j )
k〈w, vj〉V .

Hence, for k > 1 we can use (3.24) to estimate

1

σj

(
1− (1− τσ2

j )
k
) ∣∣∣〈f δ − f, vj〉V ∣∣∣ = τσj

k∑
j=1

(1− τσ2
j )
k−j

∣∣∣〈f δ − f, vj〉V ∣∣∣
≤ τkσj

∣∣∣〈f δ − f, vj〉V ∣∣∣ ≤ τkσ1

∣∣∣〈f δ − f, vj〉V ∣∣∣ .
Together with the result from Lemma 3.2 we conclude

‖ukδ − u†‖U ≤ τkδ‖K‖L(U ,V) +
‖w‖U√
τ(2k − 1)

.
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Note that the decrease of the residual in Lemma 3.3 holds true for all f ∈ V. As we obviously
do not want to iterate until infinity – this would blow up the data error in (3.28) – this decrease
together with the stepsize-constraint (3.26) motivates the use of (3.10) as a stopping criterion.
The following lemma shows that with (3.20) we indeed minimise the difference between ukδ and u†

(in terms of the U norm) as long as (3.10) is violated.

Lemma 3.5. Let (3.26) be satisfied. Then the iterates of (3.20) satisfy

‖uk+1
δ − u†‖U ≤ ‖ukδ − u†‖U

for k ≤ k∗, f = Ku† and f δ ∈ V with ‖f δ − f‖V ≤ δ. Here, k∗ satisfies the discrepancy principle
(3.10) for η = 2/(2− τ‖K‖2L(U ,V)) > 1. Moreover, equality can only be attained for δ = 0 and ukδ
satisfying the normal equation (2.3).

Proof. We prove the statement by showing that ‖uk+1
δ − u†‖2U − ‖ukδ − u†‖2U is negative whilst the

discrepancy principle is not violated. We estimate

‖uk+1
δ − u†‖2U − ‖ukδ − u†‖2U = ‖ukδ − τK∗(Kukδ − f δ)− u†‖2U − ‖ukδ − u†‖2U

= τ2‖K∗(Kukδ − f δ)‖2U − 2τ〈Kukδ − f δ,Kukδ − f〉V
≤ τ2‖K‖2L(U ,V)‖Kukδ − f δ‖2V − 2τ 〈Kukδ − f δ,Kukδ − f + f δ − f δ〉V︸ ︷︷ ︸

=‖Kukδ−fδ‖2V+〈Kukδ−fδ,fδ−f〉V

= τ
(
τ‖K‖2L(U ,V) − 2

)
‖Kukδ − f δ‖2V + 2τ〈f − f δ,Kukδ − f δ〉V

≤ τ
(
τ‖K‖2L(U ,V) − 2

)
‖Kukδ − f δ‖2V + 2τδ‖Kukδ − f δ‖V

= −τ‖Kukδ − f δ‖V
((

2− τ‖K‖2L(U ,V)

)
‖Kukδ − f δ‖V − 2δ

)
= −2τ

η
‖Kukδ − f δ‖V

(
‖Kukδ − f δ‖V − ηδ

)
.

Hence, for k ≤ k∗ we conclude ‖uk+1
δ − u†‖U ≤ ‖ukδ − u†‖U .

3.3 Tikhonov regularisation revisited

We conclude this chapter by showing that Tikhonov regularisation can not just be interpreted as
the spectral regularisation (3.6) and the solution of the well-posed operator equation (3.14), but
also as the minimiser of a functional.

Theorem 3.10. For f ∈ V the Tikhonov-regularised solution uα = Rαf with Rα as defined in
(3.6) is uniquely determined as the global minimiser of the Tikhonov-functional

Tα(u) :=
1

2
‖Ku− f‖2V +

α

2
‖u‖2U . (3.29)

Proof. ⇒: Let uα be the Tikhonov-regularised solution and we show that it is also a global
minimiser. A global minimiser û ∈ U of Tα(û) is characterised via Tα(û) ≤ Tα(u) for all u ∈ U .
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Hence, it follows from

Tα(u)− Tα(uα) =
1

2
‖Ku− f‖2V +

α

2
‖u‖2U −

1

2
‖Kuα − f‖2V −

α

2
‖uα‖2U

=
1

2
‖Ku‖2V − 〈Ku, f〉+

α

2
‖u‖2U −

1

2
‖Kuα‖2V + 〈Kuα, f〉 −

α

2
‖uα‖2U

+ 〈(K∗K + αI)uα −K∗f, uα − u〉︸ ︷︷ ︸
=0

=
1

2
‖Ku−Kuα‖2V +

α

2
‖u− uα‖2U

≥ 0

that uα is a global minimiser of Tα.
⇐: Let now û be a global minimiser. If we have Tα(û) ≤ Tα(u) (for all u ∈ U), it follows with
u = û+ τv for arbitrary τ > 0 and fixed v ∈ U that

0 ≤ Tα(u)− Tα(û) =
τ2

2
‖Kv‖2V +

τ2α

2
‖v‖2U + τ〈(K∗K + αI)û−K∗f, v〉U

holds true. Dividing by τ and subsequent consideration of the limit τ ↓ 0 thus yields

〈(K∗K + αI)û−K∗f, v〉U ≥ 0 , for all v ∈ U .

Thus (K∗K + αI)û−K∗f = 0 and we conclude û = uα, i.e. a global minimiser is the Tikhonov-
regularised solution. This also shows that the global minimiser of the Tikhonov functional (3.29)
is unique.

This result paves the way for a generalisation of Tikhonov regularisation to a much broader
class of regularisation methods that we want to discuss in the following chapter.
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Chapter 4

Variational regularisation
for linear inverse problems

At the end of the last chapter we have seen that Tikhonov regularisation1 Rαf
δ can be characterised

as the solution of the minimisation problem

Rαf
δ = arg min

u∈U

{1

2
‖Ku− f δ‖2V +

α

2
‖u‖2U

}
.

It is well known that the solution to an unconstrained minimisation problem has a vanishing
derivative. In function spaces, the (Gâteaux-) derivative is also called the “first variation” such that
minimisation problems are also called variational problems and methods that rely on minimising
a functional variational methods. In this section we want to investigate variational methods for
regularisation of linear inverse problems. To do so we will generalise Tikhonov regularisation
by choosing different regularisation functionals J : U → R and compute regularised solutions by
minimising the functional

Φα,fδ :=
1

2
‖Ku− f δ‖2V + αJ(u) .

Regularisation of this form is sometimes called Tikhonov-type regularisation but we will refer to this
as variational regularisation. Before we have a look at the theory behind variational regularisation
such as the existence and uniqueness of minimisers we will discuss several examples of regularisation
functionals J .

Example 4.1 (Tikhonov-Philipps regularisation). The easiest way to extend classical Tikhonov
regularisation to a more general regularisation method is to replace 1

2‖u‖2U by 1
2‖Du‖2Z where

D : U → Z is a linear (not necessarily bounded) operator and we thus minimise

1

2
‖Ku− f δ‖2V +

α

2
‖Du‖2Z ,

which became known as Tikhonov-Philipps regularisation. While Tikhonov regularisation penalises
the norm of u, in Tikhonov-Philipps regularisation only certain features of u (depending on the
choice of D) are penalised. The most frequent used operator D in imaging applications is the
gradient operator ∇ such that the regulariser J corresponds to the semi-norm on H1(Ω) which
is the Sobolev space of functions u ∈ L2(Ω) such that the weak derivative ∇u exists and ∇u ∈

1This regularisation is called ridge regression in the statistical literature.
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L2(Ω,Rn). By using this regulariser, only the variations in u but not the actual intensities are
penalised which helps to control noise without a bias of the intensities towards zero.

If the operator D is given by Du = (u,∇u) and Z = L2(Ω)× L2(Ω,Rn) is equipped with the
natural inner product for product spaces, then

J(u) =
1

2
‖Du‖2Z =

1

2
‖u‖2L2 +

1

2
‖∇u‖2L2

is the norm on H1(Ω) and it corresponds to classical Tikhonov regularisation on H1(Ω).

Example 4.2 (Maximum-entropy regularisation). Maximum-entropy regularisation is of partic-
ular interest if solutions of the inverse problem are assumed to be probability density functions
(pdf), i.e. functions in the set

PDF(Ω) :=

{
u ∈ L1(Ω)

∣∣∣∣ ∫
Ω
u(x) dx = 1, u ≥ 0

}
.

The set PDF(Ω) is a convex subset but it is not a subspace as differences of pdfs are not necessarily
pdfs. The (differential) entropy used in physics and information theory is defined as the functional
PDF(Ω)→ R with

u 7→ −
∫

Ω
u(x) log(u(x)) dx ,

and the convention 0 log(0) := 0. The corresponding regularisation with the negative entropy
reads as

min
u∈PDF(Ω)

{
1

2
‖Ku− f‖2V + α

∫
Ω
u(x) log(u(x)) dx

}
,

for operators K ∈ L(L1(Ω),V).

Example 4.3 (`1-regularisation). When it comes to non-injective operatorsK ∈ L(`1, `2) between
sequence spaces, the `1-norm, i.e. ‖u‖`1 :=

∑∞
j=1 |uj | is often used as a regulariser, in order to

enforce sparse solutions, see example in Figure 4.1. The corresponding minimisation problem2

reads as

min
u∈`1

1

2
‖Ku− f‖2`2 + α

∞∑
j=1

|uj |

 .

Example 4.4 (Elastic net). Another regularisation method from statistics is the elastic net, where
the regulariser is the weighted sum of the `1-norm and the squared `2-norm:

J(u) = ‖u‖`1 +
β

2
‖u‖2`2 .

Here the idea is to combine two favourable models in order to get sparse solutions with more
stability. As `1 ⊂ `2 we could either consider the elastic net on the Banach space `1 or on the
Hilbert space `2. In case we decide to do the latter, we can extend the elastic net such that

J(u) =

{
‖u‖`1 + β

2 ‖u‖2`2 if u ∈ `1
∞ if u ∈ `2 \ `1

.

Intuitively, the value ∞ makes sure that a minimiser will never be in `2 \ `1 but we will discuss
this aspect in more detail later.
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minimal `2-norm minimal `1-norm

x

y

Figure 4.1: Non-injective operators have a non-trivial kernel such that the inverse problem has more than
one solution and the solutions form an affine subspace visualised by the solid line. Different regularisation
functionals favour different solutions. The circle and the diamond indicate all points with constant `2-norm,
respectively `1-norm, and the minimal `2-norm and `1-norm solutions are the intersections of the line with
the circle, respectively the diamond. As it can be seen, the minimal `2-norm solution has two non-zero
components while the minimal `1-norm solution has only one non-zero component and thus is sparser.

−1 1

1

x

y

−1 1

1

x

y

Figure 4.2: The absolute value function on the left is in H1,1(R) while the Heaviside function on the
right is not. The solid dot at a jump indicates the value that the function takes. However, the Heaviside
function is in BV(R) which shows that BV(Ω) is larger than H1,1(R). Moreover, it shows that BV(R)
includes function with discontinuities which is a favourable model for images with sharp edges.

Example 4.5 (Total variation). Total variation as a regulariser has originally been introduced
for image-denoising and -restoration applications with the goal to preserve edges in images, re-
spectively discontinuities in signals [12]. For smooth signals u ∈ H1,1(Ω), i.e. u ∈ L1(Ω) and has
a weak derivative ∇u ∈ L1(Ω,Rn), the total variation is simply defined as the semi-norm on the
Sobolev space H1,1(Ω)

TV(u) :=

∫
Ω
‖∇u(x)‖2 dx .

However, functions in H1,1(Ω) may not allow discontinuities which are useful in imaging applica-
tions to model images with sharp edges.

To allow discontinuities while still preserving some regularity (otherwise we could model images
in L1(Ω) for instance) we generalise the definition of the total variation. It is well-known (e.g.
Cauchy–Schwarz inequality) that for x, v ∈ Rn with ‖v‖2 ≤ 1 we have that 〈v, x〉 ≤ ‖x‖2. Thus,

2This is called lasso in the statistical literature.
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for any test function ϕ ∈ D(Ω,Rn) with

D(Ω,Rn) :=
{
ϕ ∈ C∞0 (Ω;Rn)

∣∣∣ ‖ϕ(x)‖2 ≤ 1
}

we have that

TV(u) =

∫
Ω
‖∇u(x)‖2 dx ≥

∫
Ω
〈∇u(x), ϕ(x)〉 dx = −

∫
Ω
〈u(x),divϕ(x)〉 dx

where the last equality is due to partial integration (Gauss’ divergence theorem). In fact one can
show that

TV(u) = sup
ϕ∈D(Ω,Rn)

∫
Ω
〈u(x), divϕ(x)〉 dx ,

which gives rise to the definition of functions of bounded variation.

BV(Ω) :=
{
u ∈ L1(Ω)

∣∣∣ ‖u‖BV := ‖u‖L1 + TV(u) <∞
}

It can be shown that BV(Ω) is much larger than H1,1(Ω) and contains functions with discontinu-
ities, see examples in Figure 4.2.

The total variation regularisation can then be written as

min
u∈BV(Ω)

{
1

2
‖Ku− f‖2V + αTV(u)

}
, (4.1)

for K ∈ L(BV(Ω),V).

To summarise the introduction, variational regularisation aims at finding approximations to
the solution of the inverse problem (1.1) by minimising appropriate functionals of the form

Φα,fδ(u) :=
1

2
‖Ku− f δ‖2V + αJ(u) , (4.2)

where J : U → R ∪ {+∞} represents a functional over the Banach space U , V is a Hilbert space
and K ∈ L(U ,V) a linear and continuous operator, and α > 0 is a real, positive constant.
The term D(u) := 1

2‖Ku − f δ‖2V is usually named fidelity or data term, as it measures the
deviation between the measured data f δ and the forward model Ku. The functional J is the
regularisation term or regulariser as it will impose certain regularity conditions on the unknown
u. The regularisation parameter will balance between both terms. Next, we will study some general
theory on variational methods that will tell us under which conditions we can expect existence
and uniqueness of solutions to those minimisation problems.

4.1 Variational methods

4.1.1 Background

Banach spaces and weak convergence

To cover all the examples of the beginning of this chapter we have to extend our setting to include
Banach spaces. These are complete, normed vector spaces (as Hilbert spaces) but they may not
have an inner product. For every Banach space U , we can define the space of linear and continuous
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functionals which is called the dual space U∗ of U , i.e. U∗ := L(U ,R). Let u ∈ U and p ∈ U∗,
then we usually write the dual product 〈p, u〉 instead of p(u). Obviously, the dual product is not
symmetric (in contrast to the inner product of Hilbert spaces). Moreover, for any K ∈ L(U ,V)
there exists a unique operator K∗ : V∗ → U∗, called the adjoint of K such that for all u ∈ U and
p ∈ V∗ we have

〈K∗p, u〉 = 〈p,Ku〉 .
It is easy to see that either sides of the equation are well-defined, e.g. K∗p ∈ U∗ and u ∈ U .

As the dual space is a Banach space as well, it has a dual space as well which we will call the
bi-dual space of U and denote it with U∗∗ := (U∗)∗. As every u ∈ U defines a continuous and linear
mapping on the dual space U∗ by 〈E(u), u∗〉 := 〈u∗, u〉, the mapping E : U → U∗∗ is well-defined.
It can be shown that E is a linear and continuous isometry (and thus injective). In the special
case when E is surjective, we call U reflexiv. Examples of reflexive Banach spaces include Hilbert
spaces and Lp, `p spaces with 1 < p <∞. We call the space U separable if there exists a set X ⊂ U
of at most countable cardinality such that X = U .

A problem in infinite dimensional spaces is that bounded sequences may fail to have convergent
subsequences. An example is for instance in `2 the sequence {uk}k∈N ⊂ `2, ukj = 1 if k = j and
0 otherwise. It is easy to see that ‖uk‖`2 = 1 and that there is no u ∈ `2 such that uk → u.
To circumvent this problem, we define a new weaker topology on U . We say that {uj}j∈N ⊂ U
converges weakly to u ∈ U if and only if for all p ∈ U∗ the sequence of real numbers {〈p, uj〉}j∈N
converges and

〈p, uj〉 → 〈p, u〉 .
We will denote weak convergence by uj ⇀ u. On a dual space U∗ we could define another topology
(in addition to the strong topology induced by the norm and the weak topology as the dual space
is a Banach space as well). We say a sequence {pj}j∈N ⊂ U∗ converges in weak-∗ to p ∈ U∗ if and
only if

〈pj , u〉 → 〈p, u〉 for all u ∈ U
and we denote weak-∗ convergence by pj

∗→ p. Similarly, for any topology τ on U we denote the
convergence in that topology by uj

τ→ u.
With these two new notions of convergence, we can solve the problem of bounded sequences:

Theorem 4.1 (Sequential Banach-Alaoglu Theorem, e.g. [13, p. 70] or [14, p. 141]). Let U
be a separable normed vector space. Then every bounded sequence {uj}j∈N ⊂ U∗ has a weak-∗

convergent subsequence.

Corollary 4.1 ([16, p. 64]). Each bounded sequence {uj}j∈N in a reflexive Banach space U has a
weakly convergent subsequence.

Infinity calculus

We will look at functionals E : U → R∞ whose range is modelled to be the extended real line
R∞ := R∪ {+∞} where the symbol ∞ denotes an element that is not part of the real line that is
by definition larger than any other element of the reels, i.e. x <∞ for all x ∈ R. This is useful to
model constraints: For instance, if we were trying to minimise E : [−1,∞)→ R, x 7→ x2 we could
remodel this minimisation problem by Ẽ : R→ R∞

Ẽ(x) =

{
x2 if x > −1

∞ else
.
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Obviously both functionals have the same minimiser but Ẽ is defined on a vector space and not
only on a subset. This has two important features: On the on hand, it makes many theoretical
arguments easier as we do not need to worry whether E(x + y) is defined or not. On the other
hand, it makes practical implementations easier as we are dealing with unconstrained optimisation
instead of constrained optimisation. This comes at a cost that some algorithms are not applicable
anymore, e.g. the function Ẽ is not differentiable everywhere whereas E is (in the interior of its
domain).

It is useful to note that one can calculate on the extended real line R∞ as we are used to on
the real line R but the operations with ∞ need yet to be defined. As ∞ is larger than any other
element it makes sense that it dominates any other calculation, i.e. for all x ∈ R and λ > 0, we
have

x+∞ :=∞+ x :=∞, λ · ∞ :=∞ · λ :=∞, x/∞ := 0.

However, care needs to be taken as some calculations are not defined, e.g. ∞−∞.

Definition 4.1. Let C ⊂ U be a subset of a vector space U and E : C → R∞ a functional. Then
the effective domain of E is

dom(E) := {u ∈ C | E(u) <∞} .

Convex calculus

A property of fundamental importance of sets and functions is convexity. Simply said, a set (or
function) is convex if the shape is regular. More precisely it is defined as follows.

Definition 4.2. Let U be a vector space. A subset C ⊂ U is called convex, if λu + (1 − λ)v ∈ C
for all λ ∈ (0, 1) and all u, v ∈ C.

Figure 4.3: Example of a convex set (left) and non-convex set (right).

In analogy we can define convex functionals.

Definition 4.3. Let C ⊂ U be a convex set. A functional E : C → R∞ is called convex, if

E(λu+ (1− λ)v) ≤ λE(u) + (1− λ)E(v)

for all λ ∈ (0, 1) and all u, v ∈ dom(E) with u 6= v. It is called strictly convex if the inequality is
strict.

Example 4.6. The absolute value function R → R, x 7→ |x| is convex but not strictly convex
while the quadratic function x 7→ x2 is stricly convex. For other examples, see Figure 4.4.
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Figure 4.4: Example of a convex function (left), a strictly convex function (middle) and a non-convex
function (right).

Example 4.7. Let C ⊂ U be a set. Then the characteristic function χC : U → R∞ with

χC(u) :=

{
0 u ∈ C
+∞ u ∈ U \ C

(4.3)

is convex if and only if C ⊂ U is a convex subset. To see the convexity, if both u and v are in C,
then by the convexity of C the convex combination λu+ (1− λ)v is as well in C and both the left
and the right hand side of the desired inequality are zero.

Lemma 4.1. Let α, β ≥ 0 and E,F : U → R∞ be two convex functions. Then αE+βF : U → R∞
is convex. Furthermore, if β > 0 and F strictly convex, then αE + βF is strictly convex.

Proof. The proof shall be done as an exercise.

Definition 4.4. Let U be a Banach space and E : U → R∞ a functional. Then, E is called
subdifferentiable at u ∈ U , if there exists an element p ∈ U∗ such that

E(v) ≥ E(u) + 〈p, v − u〉

holds, for all v ∈ U . Furthermore, we call p a subgradient at position u. The collection of all
subgradients at position u, i.e.

∂E(u) := {p ∈ U∗ | E(v) ≥ E(u) + 〈p, v − u〉 ,∀v ∈ U} ,

is called subdifferential of E at u.

Remark 4.1. Let E : C → R∞ be a convex functional. Then the subdifferential is non-empty at
all u ∈ dom(E).

For non-differentiable functionals the subdifferential is multivalued; we want to consider the
subdifferential of the absolute value function as an illustrative example.

Example 4.8. Let U = R, and let E : R → R be the absolute value function E(x) = |x|. Then,
the subdifferential of E at x is given by

∂E(x) = sign(x) :=


{1} for x > 0

[−1, 1] for x = 0

{−1} for x < 0

,

which you will prove as an exercise. A visual explanation is given in Figure 4.5.
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a) b)

Figure 4.5: Visualisation of the subdifferential. Linear approximations of the functional have to lie
completely underneath the function. For points where the function is not differentiable there may be more
than one such approximation.

4.1.2 Minimisers

Definition 4.5. Let C ⊂ U be a set and E : C → R∞ a functional. We say that u∗ ∈ C solves the
minimisation problem

min
u∈C

E(u)

if and only if E(u∗) <∞ and E(u∗) ≤ E(v), for all v ∈ C. We call u∗ a minimiser of E.

We will now review two properties that are necessary for the well-definedness of a minimisation
problem.

Definition 4.6. A functional E : U → R∞ is called proper, if the effective domain dom(E isis
not empty.

Definition 4.7. A functional E : U → R∞ is called bounded from below if there exists a constant
C > −∞ such that for all u ∈ U we have E(u) ≥ C.

This condition is obviously necessary for the existence of the infimum infu∈U E(u).
Finally we characterise minimisers of convex functionals.

Theorem 4.2. Let E : U → R∞ be a proper, convex functional. An element u ∈ U is a minimiser
of E if and only if 0 ∈ ∂E(u).

Proof. By definition, 0 ∈ ∂E(u) if and only if for all v ∈ U it holds

E(v) ≥ E(u) + 〈0, v − u〉 = E(u) ,

which is by definition the case if and only if u is a minimiser of E.

4.1.3 Existence

If all minimising sequences (that converge to the infimum assuming it exists) are unbounded, then
there cannot exist a minimiser. A sufficient condition to avoid such a scenario is coercivity.

Definition 4.8. A functional E : U → R∞ is called coercive, if for all {uj}j∈N with ‖uj‖U →∞
we have E(uj)→∞.

Remark 4.2. Coercivity is equivalent to that if the function values {E(uj)}j∈N ⊂ R are bounded,
so is the sequence {uj}j∈N ⊂ U .
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Figure 4.6: While the coercive function on the left has a minimiser, it is easy to see that the non-coercive
function on the right does not have a minimiser.

Although coercivity is not strictly speaking necessary, it is sufficient that all minimising se-
quences are bounded.

Lemma 4.2. Let E : U → R∞ be a proper, coercive functional and bounded from below. Then
the infimum infu∈U E(u) is finite. Then, there are minimising sequences, i.e. {uj}j∈N ⊂ U with
E(uj) < ∞ and E(uj) → infu∈U E(u). Moreover, all minimising sequences are bounded, in the
sense that there exists a constant C > 0 such that ‖uj‖U < C for all j ∈ N.

Proof. As E is proper and bounded from below, there exists a C1 > 0 such that we have −∞ <
−C1 < infuE(u) <∞ which also guarantees the existence of a minimising sequence. Let {uj}j∈N
be any minimising sequence, i.e. E(uj)→ infuE(u). Then there exists a j0 ∈ N such that for all
j > j0 we have

E(uj) ≤ inf
u
E(u) + 1︸ ︷︷ ︸
=:C2

<∞ .

With C3 := max1≤j≤j0 E(uj) and C := max(C1, C2, C3) we get that |E(uj)| < C for all j ∈ N.
From the coercivity it follows that {uj}j∈N is bounded, see Remark 4.2.

More importantly we are going to need that functionals are sequentially lower semi-continuous.
Roughly speaking this means that the functional values for arguments near an argument u are
either close to E(u) or greater than E(u).

Definition 4.9. Let U be a Banach space with topology τU . The functional E : U → R∞ is said
to be sequentially lower semi-continuous with respect to τU at u ∈ U if

E(u) ≤ lim inf
j→∞

E(uj)

for all sequences {uj}j∈N ⊂ U with uj → u in the topology τU of U .
Remark 4.3. For topologies that are not induced by a metric we have to differ between a topolog-
ical property and its sequential version, e.g. continuous and sequentially continous. If the topology
is induced by a metric, then these two are the same. However, for instance the weak and weak-∗
topology are generally not induced by a metric.

Example 4.9. The functional ‖ · ‖1 : `2 → R∞ with

‖u‖1 =

{∑∞
j=1 |uj | if u ∈ `1

∞ else

is lower semi-continuous with respect to `2.
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Figure 4.7: Visualisation of lower semi-continuity. The solid dot at a jump indicates the value that the
function takes. The function on the left is continuous and thus lower semi-continuous. The functions in
the middle and on the right are discontinuous. While the function in the middle is lower semi-continuous,
the function on the right is not (due to the limit from the left at the discontinuity).

Proof. Let {uj}j∈N ⊂ `2 be a squence with uj → u ∈ `2. As strong convergence implies weak
converge, which implies convergence of the components (the functionals δi : `2 → R, δi(u) = ui are
linear and continuous), we have that for all k ∈ N that ujk → uk. The assertion follows then with
Fatou’s lemma

‖u‖1 =
∞∑
k=1

|uk| =
∞∑
k=1

lim
j→∞

|ujk| ≤ lim inf
j→∞

∞∑
k=1

|ujk| = lim inf
j→∞

‖uj‖1 .

Note that it is note clear whether the right hand side is finite. The left hand side certainly is.

Example 4.10. Let Ω ⊂ Rn be open and bounded. Then, the total variation is lower semi-
continuous with respect to L1.

Proof. Recall that the total variation was defined by means of the test functions

D(Ω,Rn) :=
{
ϕ ∈ C∞0 (Ω;Rn)

∣∣∣ ‖ϕ(x)‖2 ≤ 1
}

as

TV(u) = sup
ϕ∈D(Ω,Rn)

∫
Ω
〈u(x), divϕ(x)〉 dx .

Let {uj}j∈N ⊂ BV(Ω) be a sequence converging in L1(Ω) with uj → u in L1(Ω). Then for any
test function ϕ ∈ D(Ω,Rn)∫

Ω
[u(x)− uj(x)] divϕ(x)dx ≤

∫
Ω
|u(x)− uj(x)|dx︸ ︷︷ ︸

→0

sup
x∈Ω
| divϕ(x)| → 0

and thus ∫
Ω
u(x) divϕ(x)dx = lim

j→∞

∫
Ω
uj(x) divϕ(x)dx ≤ lim inf

j→∞
TV(uj) .

Taking the supremum over all test functions shows the assertion. Note that the right hand side
may not be finite.

This leads to the “direct method” or “fundamental theorem of optimisation”.
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Theorem 4.3 (“Direct method”, David Hilbert, around 1900). Let U be a Banach space and τU a
topology (not necessarily the one induced by the norm) on U such that bounded sequences have τU -
convergent subsequences. Let E : U → R∞ be proper, bounded from below, coercive and sequentially
lower semi-continuous with respect to τU . Then there exists a minimiser u∗ of E.

Proof. From Lemma 4.2 we know that infu∈U E(u) is finite, minimising sequences exist and that
they are bounded. Let {uj}j∈N ∈ U be a minimising sequence. Thus, from the assumption on the
topology τU there exists a subsequence {ujk}k∈N and u∗ ∈ U with ujk

τU→ u∗ for k →∞. From the
sequential lower semi-continuity of E we obtain

E(u∗) ≤ lim inf
k→∞

E(ujk) = lim
j→∞

E(uj) = inf
u∈U

E(u) <∞ ,

consequently u∗ minimises E.

The above theorem is very general but its conditions are hard to verify but the situation is a
easier in reflexive Banach spaces.

Corollary 4.2. Let U be a reflexive Banach space and E : U → R∞ be a proper, bounded from
below, coercive and sequentially lower semi-continuous functional with respect to the weak topology.
Then there exists a minimiser of E.

Proof. The statement follows from the direct method, Theorem 4.3, as in reflexive Banach spaces
bounded sequences have weakly convergent subsequences, see Corollary 4.1.

Remark 4.4. For convex functions on reflexive Banach spaces, the situation is even easier. It can
be shown that a convex function is sequentially lower semi-continuous with respect to the weak
topology if and only if it is lower semi-continuous with respect to the strong topology (see e.g. [3,
p. 149] for Hilbert spaces).

Remark 4.5. It is easy to see that the key ingredient for the existence of minimisers is that
bounded sequences have a convergent subsequence which is difficult to prove in practical situations.
Another option is to change the space and consider a space in which U is compactly embedded in,
i.e. the mapping U → V, u 7→ u is compact. Then (by definition) every bounded sequence in U
has a convergent subsequence in V.

4.1.4 Uniqueness

Theorem 4.4. Assume that the functional E : U → R∞ has at least one minimiser and let E be
strictly convex. Then the minimiser is unique.

Proof. Let u and v be two minimisers of E. Assume that they are different, i.e. u 6= v. Then it
follows from the minimising properties of u and v as well as the strict convexity of E that

E(u) ≤ E(1
2u+ 1

2v) <
1

2
E(u) +

1

2
E(v)︸ ︷︷ ︸
≤E(u)

≤ E(u)

which is a contradiction. Thus, u = v and the assertion is proven.

Example 4.11. Convex (but not strictly convex) functions may have have more than one min-
imiser, examples include constant and trapezoidal functions, see Figure 4.8. On the other hand,
convex (and even non-convex) functions may have a unique minimiser, see Figure 4.8.
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a) b)

Figure 4.8: a) Convex functions may not have a unique minimiser. b) Neither strict convexity nor
convexity is necessary for the uniqueness of a minimiser.

4.2 Variational regularisation

The aim of this section is to have a detailed look at the model Rα : V → U with

Rαf := uα := arg min
u

{
Φα,f (u) :=

1

2
‖Ku− f‖2V + αJ(u)

}
. (4.4)

We will establish conditions on the spaces U ,V, the functional J and the operator K under which
the minimiser exists and is unique and therefore the mapping Rα is well-defined. We will analyse
the continuity of the mapping Rα which means that the solution depends continuous on the data
and thus can handle small variations due to noise. We also show that there are parameter choice
rules that make Rα a convergent regularisation in a modified sense (that we will define later) and
prove convergence rates under a source condition.

4.2.1 Existence and uniqueness

Existence

Lemma 4.3. Let U be a Banach space and τU a topology on it. Let E : U → R and F : U → R∞
be proper functionals that are both sequentially lower semi-continuous with respect to the topology
τU and bounded from below. Then E + F : U → R∞ is proper, sequentially lower semi-continuous
with respect to the topology τU and bounded from below.

Proof. First of all, as F is proper, there exists u ∈ U such that F (u) <∞ and as E(u) <∞ it is
clear that (E + F )(u) <∞ which shows that E + F is proper.

Second, for all u ∈ U we have from the boundedness from below of E and F that E(u) ≥ C1

and F (u) ≥ C2 and thus,

(E + F )(u) = E(u) + F (u) ≥ C1 + C2 > −∞ .

Finally, let {uj}j∈N ⊂ U be a sequence and u ∈ U with uj → u in τU . Then by the sequential
lower semi-continuity with respect to τU we have that

(E + F )(u) ≤ lim inf
j→∞

E(uj) + lim inf
j→∞

F (uj)

≤ lim inf
j→∞

(E(uj) + F (uj)) = lim inf
j→∞

(E + F )(uj)

which shows that E+F is sequentially lower semi-continuous with respect to τU and all assertions
are proven.
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Lemma 4.4. Let U be a Banach space and E,F : U → R∞ be functionals. Let E be coercive and
F be bounded from below, then E + F is coercive.

Proof. From the boundedness from below of F , there exists a constant C ≥ −∞ such that F (u) >
C for all u ∈ U . Thus we see that

(E + F )(u) = E(u) + F (u) ≥ E(u) + C →∞

as ‖u‖U →∞ which proves that E + F is coercive.

In many situations of interest, the lemma above does not apply because the coercivity comes
jointly from the data term and the prior as we will see in the following example.

Example 4.12. Let Ω ⊂ Rn be a bounded. Consider the space U = BV(Ω) and the regularisation
functional J = TV. One can easily see (e.g. integration by parts) that TV(u+ c) = TV(u), for all
c ∈ R, u ∈ BV(Ω) such that constant functions have zero total variation. Notice that this implies
that J is not coercive on the whole space U as uj(x) = j/|Ω|, |Ω| :=

∫
Ω 1 dx defines a sequence such

that ‖uj‖L1 = j and TV(uj) = 0. However, we can make use of a Poincaré–Wirtinger inequality
for BV.

Proposition 4.1 ([6, p. 24]). Let Ω ⊂ Rn be a bounded domain (non-empty, open, connected and
bounded) with Lipschitz boundary. There exists a constant C > 0 such that for all u ∈ BV(Ω) the
Poincaré–Wirtinger inequality is satisfied

‖u− uΩ‖L1 ≤ C TV(u)

where uΩ := 1
|Ω|
∫

Ω u(x)dx is the mean-value of u over Ω.

Continuation of Example 4.12. Let Ω now fulfill the conditions of Proposition 4.1. Further-
more, let p0 ∈ U∗ with

〈p0, u〉 =
1

|Ω|

∫
Ω
u(x)dx

and denote the space of zero-mean functions by U0 := {u ∈ U |u ∈ N (p0)}. By the Poincaré–
Wirtinger inequality it is clear that the total variation is coercive on U0 and the data term has to
make sure that the whole functional Φα,f is coercive on the whole space U . As we will see in the
next, Lemma 4.5, the condition 1 6∈ N (K) is sufficient to guarantee coercivity in this scenario.

Lemma 4.5. Let U ,V be Banach spaces, K ∈ L(U ,V), J : U → [0,∞] and f ∈ V. Let p0 ∈
U∗, u0 ∈ U , 〈p0, u0〉 = 1,

U0 := {u ∈ U | u ∈ N (p0)}
so that u0 6∈ N (K) and J is coercive on U0 in the sense that

‖u− 〈p0, u〉u0‖U →∞ implies J(u)→∞ .

Then the variational regularisation functional Φα,f defined by (4.4) is coercive.

Proof. Any u ∈ U can be decomposed into u = v + w where v := u − 〈p0, u〉u0 ∈ U0 and
w := 〈p0, u〉u0 ∈ span(u0). Now, let {uj}j∈N ⊂ U be a sequence with ‖uj‖U → ∞. On the one
hand, if ‖vj‖U → ∞, then by the coercivity of J on U0 and the boundedness from below of the
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data term, we have that Φα,f (uj) → ∞. On the other hand, if ‖vj‖U < C for some C > 0, then
from

‖uj‖U ≤ ‖vj‖U + ‖〈p0, u
j〉u0‖U < C + |〈p0, u

j〉|‖u0‖U

it follows that |〈p0, u
j〉| → ∞. Therefore,

‖Kuj − f‖V = ‖K(vj + wj)− f‖V
≥ ‖Kwj‖V − ‖f −Kvj‖V
> ‖Ku0‖V︸ ︷︷ ︸

>0

|〈p0, u
j〉|︸ ︷︷ ︸

→∞

−‖f‖V − ‖K‖C︸ ︷︷ ︸
bounded from below

→∞

and thus Φα,f (uj)→∞ as the regularisation functional J is bounded from below.

Remark 4.6. A natural question here is whether the coercivity can also come completely from
the data term 1

2‖Ku− f‖2V . On the one hand if K is not injective, then the kernel is non-trivial,
thus we cannot expect the data term to be coercive. On the other hand, even if K was injective
we cannot expect coercivity. Assume that the data term was coercive, U a Hilbert space, the
topologies τU and τV the weak topologies on U and V and f ∈ R(K) \ R(K). Then we can apply
the direct method on the data term only and we get the existence of a minimiser which is by
definition a least squares solution, see Chapter 2. This is a contradiction to Lemma 2.2.

The remark will be illustrated by the following example.

Example 4.13. Let us consider the Example 2.1 again where the operator wasK : `2 → `2, (Ku)j :=
uj/j and the data f ∈ `2 with fj := 1/j. Then the {uk}k∈N ⊂ `2 with

ukj :=

{
1 j ≤ k
0 else

defines a sequence {Kuk}k∈N which is in the range of K and Kuk → f in `2 but f 6∈ R(K).
In addition to the observations in Example 2.1, we see K is injective and that {uk}k∈N is a

minimising sequence of the data term, i.e. ‖Kuk−f‖2`2 → 0 but there is no minimiser as f 6∈ R(K).
However, as ‖uk‖`2 = k the sequence {uk}k∈N is unbounded and thus u 7→ ‖Ku− f‖2`2 cannot be
coercive.

Lemma 4.6. Let U and V be Banach spaces with topologies τU and τV . Moreover, let the norm on
V be sequentially lower semi-continuous with respect to τV , the operator K : U → V be sequentially
continuous with respect to the topologies τU and τV and let {fj}j∈N ⊂ V be convergent in τV with
fj → f ∈ V. Then for any τU -convergent sequence {uj}j∈N ⊂ U with uj → u ∈ U , we have

1

2
‖Ku− f‖2V ≤ lim inf

j→∞
1

2
‖Kuj − fj‖2V .

In particular, if fj = f , then D : U → R, u 7→ 1
2‖Ku − f‖2V is sequentially lower semi-continuous

with respect to τU .

Proof. Let {uj}j∈N be a τU -convergent sequence and denote its limit by u ∈ U , i.e. uj → u in
τU . Because K is continuous with respect to τU and τV we have that Kuj → Ku in τV and thus
Kuj − fj → Ku− f in τV . Thus, the assertion follows from the sequential lower semi-continuity
of the norm with respect to τV .
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Remark 4.7. If the topologies τU and τV are the weak topologies, then the situation is much
simpler as continuity in the strong topologies implies continuity in the weak topologies. Thus the
assumptions of Lemma 4.6 are met if K is continuous.

Now we are in a position to state sufficient assumptions for the existence of minimisers.

Assumption 4.1. Sufficient assumptions for the existence of minimisers of Φα,f are:

(a) The Banach space U and Hilbert space V are associated with the topologies τU and τV . The
pair (U , τU ) has the property that bounded sequences have τU -convergent subsequences. More-
over, the norm on V is sequentially lower semi-continuous with respect to τV .

(b) The operator K : U → V is linear and sequentially continuous with respect to the topologies
τU and τV .

(c) The functional J : U → [0,∞] is proper and sequentially lower semi-continuous with respect
to τU .

(d) Either J is coercive or the pair (K,J) fulfill the assumptions of Lemma 4.5.

Theorem 4.5. Let the Assumptions 4.1 hold and let f ∈ V, α > 0. Then the variational regulari-
sation functional Φα,f defined by (4.4) has a minimiser.

Proof. It follows from the assumptions by Lemmata 4.3 and 4.6 that Φα,f is proper, sequentially
lower semi-continuous with respect to τU and bounded from below. Moreover, from Lemmata 4.4
or 4.5 (depending on assumption 4.1 (d)) Φα,f is coercive. Then from the direct method, Theorem
4.3, it follows that there exists a minimiser.

Uniqueness

Lemma 4.7. Let U be a Banach space and and V a Hilbert space. Furthermore, let K ∈
L(U ,V), f ∈ V and D : V → R∞ be defined as D(u) := 1

2‖Ku− f‖2V . Then E is convex. Further-
more, D is strictly convex if and only if K is injective.

Proof. The proof is left as an exercise.

Remark 4.8. The lemma is not true if in general if U is a Banach space, consider for instance
the examples `1 and `∞.

Example 4.14. Let U be continuously embedded into the Hilbert space Z (in symbols U ↪→ Z),
i.e. there exists a constant C > 0 such that for all u ∈ U there is ‖u‖Z ≤ C‖u‖U . Furthermore,
let β > 0. Then the functional Φα,f + β

2 ‖ · ‖2Z is always strictly convex independent of K.
Consider the product space V × Z which is a Hilbert space with the inner product

〈(v1, z1), (v2, z2)〉V×Z := 〈v1, v2〉V + 〈z1, z2〉Z .

Then we can rewrite 1
2‖Ku− f‖2V + β

2 ‖u‖2Z as

1

2

∥∥∥∥( K√
βI

)
u−

(
f
0

)∥∥∥∥2

V×Z
=

1

2
‖K̃u− f̃‖2V

where the modified operator K̃ is injective. Therefore, adding the term β
2 ‖u‖2Z can be seen as a

regularisation of the linear operator K directly.
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Theorem 4.6. Let the Assumptions 4.1 are met and let J be convex. Moreover, let either K be
injective or J be strictly convex. Then for any f ∈ U and α > 0 the variational regularisation model
is well-defined in the sense that there exists a unique mimimiser of the functional Φα,f defined by
(4.4).

Proof. Existence follows immediately from Theorem 4.5. For the uniqueness, notice that both
1
2‖Ku− f‖2V and αJ are convex and either of them is strictly convex by assumption, see Lemma
4.7. Thus by Lemma 4.1 the whole functional Φα,f is strictly convex and therefore the minimiser
is unique, see Theorem 4.4.

Example 4.15. Let α > 0, η ≥ 0,K ∈ L(`2, `2) and consider the elastic net variational regulari-
sation model 1

2‖Ku− f‖2`2 + αJ(u) with

J(u) =

{
η‖u‖1 + 1

2‖u‖22 if u ∈ `1
∞ else

.

As `2 is a Hilbert space we will employ Corollary 4.2. We choose the topologies τU , τV to be the
weak topology on `2. By Remark 4.7 the Assumptions 4.1 (a) and (b) are fulfilled and we can show
lower semi-continuity in the strong topology rather than the weak one. It is easy to see that the
prior J is strictly convex, proper and coercive. It remains to show that J is lower semi-continuous
with respect to `2. The squared `2-norm is continuous, thus lower semi-continuous and the lower
semi-continuity of the `1-norm has been proven in Example 4.9 such that the whole prior is lower
semi-continuous by Lemma 4.3.

For the example of the total variation we need to have some knowledge about compact embed-
dings of BV.

Theorem 4.7 (Rellich-Kandrachov, [1, p. 168]). Let Ω ⊂ Rn be a bounded domain with Lipschitz
boundary and either

n > mp and p∗ := np/(n−mp)
or n ≤ mp and p∗ :=∞ .

Then the embedding Hm,p(Ω)→ Lq(Ω) is continous if 1 ≤ q ≤ p∗ and compact if 1 ≤ q < p∗.

Due to approximations of u ∈ BV(Ω) by smooth functions this gives us compactness.

Corollary 4.3 ([6, p. 17]). Let Ω ⊂ Rn be bounded with Lipschitz boundary, and let p∗ := n/(n−1)
if n > 1 or p∗ := ∞ else. Then the embedding BV(Ω) → Lq(Ω) is continous if 1 ≤ q ≤ p∗ and
compact if 1 ≤ q < p∗.

Example 4.16. Let Ω ⊂ Rn be a bounded domain with Lipschitz boundary and let 1 ≤ q ≤
n/(n − 1). Let α > 0,K ∈ L(Lq(Ω), L2(Ω)) and K1 6∈ N (K) be injective and consider the
TV-variational regularisation model Φα,f : BV(Ω)→ R∞, with

Φα,f (u) =
1

2
‖Ku− f‖2L2 + αTV(u) .

This time we are neither in a Hilbert nor reflexive Banach space setting but from Corollary 4.3
we see that BV(Ω) is compactly embedded in L1(Ω). Thus every sequence bounded in BV(Ω)
has a convergent subsequence in L1(Ω). Let τU and τV be the topologies induced by the Lq-norm,
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respectively L2-norm. It is clear that the assumptions on the spaces and topologies are met. The
lower semi-continuity of TV with respect to L1 was shown in Example 4.10. Moreover, it can be
shown that TV is proper and convex. From Example 4.12 and 1 6∈ N (K) it follows that Φα,f is
coercive. Thus, a minimiser exists. The injectivity of the operator K guarantees the uniqueness
of the minimiser.

4.2.2 Continuity

We have seen that under some assumptions the variational regularisation Rα is well-defined (solu-
tions exists and are unique). In this section we show that variational regularisation is continuous
with respect to the data, i.e. small variations in the data do not lead to arbitrary large distortions
in the solution. To establish the main result we have to prove auxiliary lemmata.

Lemma 4.8. Let V be a normed space. For all f, g ∈ V there is

‖f + g‖2V ≤ 2‖f‖2V + 2‖g‖2V .

Proof. For any f, g ∈ V we have with 2ab ≤ a2 + b2, a, b ∈ R so that

‖f + g‖2V ≤
(
‖f‖V + ‖g‖V

)2

= ‖f‖2V + 2‖f‖V‖g‖V + ‖g‖2V ≤ 2‖f‖2V + 2‖g‖2V .

Lemma 4.9. Let U ,V be Banach spaces. For all u ∈ U and f, g ∈ V there is

Φα,f (u) ≤ 2Φα,g(u) + ‖f − g‖2V .

Proof. Using Lemma 4.8 and J(u) ≥ 0, we have

Φα,f (u) =
1

2
‖Ku− f‖2V + αJ(u) ≤ ‖Ku− g‖2V + ‖g − f‖2V + 2αJ(u)

= 2

(
1

2
‖Ku− g‖2U + αJ(u)

)
+ ‖f − g‖2V

= 2Φα,g(u) + ‖f − g‖2V .

Theorem 4.8 (Continuity). Assume the setting of Theorem 4.6 that guarantees the existance
and uniqueness of minimisiers of Φα,f (u) := 1

2‖Ku − f‖2V + αJ(u) for any f ∈ V and α > 0.
Moreover, let the topology τV on V be weaker than the norm topology in the sense that convergence
in norm implies convergence in τV . Then, the mapping Rα : V → U , Rαf := arg minu∈U Φα,f (u) is
sequentially strong-τU continuous, i.e. for all sequences {fj}j∈N ⊂ V with fj → f we have

Rαfj
τU→ Rαf .

Moreover, we have that J(Rαfj)→ J(Rαf).
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Proof. Let {fj}j∈N ⊂ V be a convergent sequence with fj → f and let uj := Rαfj be the minimiser
of Φα,fj and u := Rαf the minimiser of Φα,f .

We first show that {Φα,f (uj)}j∈N ⊂ R is bounded. To see this, as J is proper, there exists
ũ ∈ U such that J(ũ) < ∞ and we denote C := 2‖Kũ‖2V + 2αJ(ũ). With Lemmata 4.8 and 4.9
and the minimising property of uj we have that

Φα,f (uj) ≤ 2 Φα,fj (uj)︸ ︷︷ ︸
≤Φα,fj (ũ)

+‖f − fj‖2V

≤ ‖Kũ− fj‖2V + 2αJ(ũ) + ‖f − fj‖2V
≤ 2‖Kũ‖2V + 2‖fj‖2V + 2αJ(ũ) + ‖f − fj‖2V = 2‖fj‖2U + ‖f − fj‖2V + C .

As fj converges to f , there exists a j0 ∈ N such that for all j > j0 there is

Φα,f (uj) ≤ 2 ‖fj‖2V︸ ︷︷ ︸
‖f‖2V+1

+ ‖f − fj‖2V︸ ︷︷ ︸
≤1

+C

≤ 2‖f‖2V + C + 3 <∞ .

By the coercivity of Φα,f we know that the sequence {uj}j∈N ⊂ U is bounded, see Remark 4.2.
Thus there exist τU -convergent subsequences and let {ujk}k∈N ⊂ U be any one of those. We denote
its limit by û ∈ U , i.e. ujk → û in τU .

From Lemma 4.6 and the sequential lower semi-continuity of J we have that

1

2
‖Kû− f‖2V ≤ lim inf

k→∞
1

2
‖Kujk − fjk‖2V and J(û) ≤ lim inf

k→∞
J(ujk) . (4.5)

Thus, we conclude with (4.5) that

Φα,f (û) =
1

2
‖Kû− f‖2V + αJ(û)

≤ lim inf
k→∞

1

2
‖Kujk − fjk‖2V + α lim inf

k→∞
J(ujk)

≤ lim inf
k→∞

(
1

2
‖Kujk − fjk‖2V + αJ(ujk)

)
= lim inf

k→∞
Φα,fjk

(ujk)

≤ lim inf
k→∞

Φα,fjk
(u) = lim

k→∞
Φα,fjk

(u) = Φα,f (u) .

(4.6)

Thus, as the minimiser of Φα,f is unique, we have that û = u. Repeating the same arguments
as above for any subsequence of {uj}j∈N instead of {uj}j∈N, we see that every subsequence has a
convergent subsequence that converges to u in τU . Thus, {uj}j∈N is convergent in τU and we have
uj → u in τU and the first assertion is proven.

Moreover, also from Equation (4.6) with the convergence of {uj}j∈N it follows that

lim
j→∞

Φα,fj (uj) = Φα,f (u) .

Thus with the sequential lower semi-continuity of J with respect to τU we arrive at the second
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assertion as

lim sup
j→∞

αJ(uj) = lim sup
j→∞

(
1

2
‖Kuj − fj‖2V + αJ(uj)−

1

2
‖Kuj − fj‖2V

)
≤ lim sup

j→∞

(
1

2
‖Kuj − fj‖2V + αJ(uj)

)
︸ ︷︷ ︸

=limj→∞ Φα,fj (uj)=Φα,f (u)

+ lim sup
j→∞

(
−1

2
‖Kuj − fj‖2V

)

=
1

2
‖Ku− f‖2V + αJ(u)− lim inf

j→∞
1

2
‖Kuj − fj‖2V︸ ︷︷ ︸

≤− 1
2
‖Ku−f‖2V by (4.5)

≤ αJ(u) ≤ lim inf
j→∞

αJ(uj) .

Remark 4.9. In the theorem above we could only prove convergence in τU . If J statisfies the
Radon-Riesz property with respect to the topology τU , i.e. uj → u in τU and J(uj)→ J(u) imply
‖uj−u‖U → 0, then the convergence is in the norm topology. An example of a functional satisfying
the Radon-Riesz property is ‖ · ‖pLp / ‖ · ‖p`p with 1 < p <∞ if the underlying space is Lp / `p and
τU is the weak topology.

4.2.3 Convergent regularisation

Note that variational regularisation for general J is not necessarily a regularisation in the sense of
Definition 3.1, as we cannot expect Rαf = uα = arg minu∈U Φα,f (u) → u† for α → 0 where u† is
the minimal norm solution. However, we can generalise Definition 2.1 of a minimal norm solution
(and a least squares solution) to justify calling Rα a regularisation.

Definition 4.10. Let U and V be Banach spaces and f ∈ V. We call u ∈ U a least squares
solution of the inverse problem (1.1), if

u ∈ arg min
v∈U
‖Kv − f‖V (4.7)

As in the case of Hilbert spaces, we denote by L the set of all least squares solutions (it might be
empty). Furthermore, we call u† ∈ U a J-minimising solution of the inverse problem (1.1), if

u† ∈ arg min
v∈L

J(v) . (4.8)

Remark 4.10. If V is a Hilbert space (as in our setting in Assumption 4.1), then most of the
statements from Chapter 2 about least squares solutions still hold. In particular Lemma 2.2,
which states that L 6= ∅ if and only if f ∈ R(K)⊕R(K)⊥. However, the minimal norm solution
(J-minimising solution for J = ‖ · ‖U ) may not be unique anymore.

Lemma 4.10. Let U and V be Banach spaces, f ∈ V and K : U → V be linear. Then the set of
least squares solutions L is convex. Moreover, L is at most a singleton if K is injective.

Proof. Let u, v ∈ L, u 6= v and λ ∈ (0, 1). Then for any w ∈ U we have

‖K(λu+ (1− λ)v)− f‖V = ‖λ(Ku− f) + (1− λ)(Kv − f)‖V
≤ λ‖Ku− f‖V + (1− λ)‖Kv − f‖V
≤ λ‖Kw − f‖V + (1− λ)‖Kw − f‖V = ‖Kw − f‖V
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which shows that λu+ (1− λ)v ∈ L and thus L is convex.
For the second part, assume that K is injective and that least squares solutions exist which

are equivalently characterised by

u ∈ arg min
v∈U

{
Ψ(v) :=

1

2
‖Kv − f‖2V

}
. (4.9)

From Lemma 4.7 we know that Ψ is strictly convex and thus by Theorem 4.4 the minimiser is
unique.

Proposition 4.2. Let the assumptions of Theorem 4.6 hold and f ∈ R(K) ⊕ R(K)⊥. Then a
J-minimising solution exists and is unique.

Proof. The condition f ∈ R(K)⊕R(K)⊥ guarantees the existence of least squares solutions, i.e.
L 6= ∅. For the existence of J-minimising solutions via the direct method, we see that only the
coercivity on L may not be guaranteed by the assumptions. If J is coercive, then it is obviously
also coercive on L. If J is only coercive on U0, see Lemma 4.5 for a definition, then a similar
calculation as in the proof of Lemma 4.5 shows that for any sequence {uj}j∈N ⊂ L we have

‖f‖V = ‖K0− f‖V ≥ ‖Kuj − f‖V
= ‖K(vj + wj)− f‖V
≥ ‖Kwj‖V − ‖f −Kvj‖V
> ‖Ku0‖V |〈p0, u

j〉| − ‖f‖V − ‖K‖‖vj‖V ,

thus if ‖vj‖V is bounded, then |〈p0, u
j〉| is also bounded. Therefore for {uj}j∈N ⊂ L with ‖uj‖U →

∞ we have that ‖uj − 〈p0, uj〉‖U →∞ and thus J(uj)→∞ by the coercivity on U0.
For the uniqueness, either J is strictly convex (and thus a minimiser is unique) or K is injective

and only one least squares solution exists.

Definition 4.11 (Regularisation). Let U ,V be Banach spaces, τU a topology on U , f ∈ V and
K ∈ L(U ,V). Moreover, let u† be the J-minimising solution (assuming it exists and is unique).
We call the family of operators {Rα}α>0, Rα : V → U a regularisation (with respect to τU) of the
inverse problem (1.1), if Rα is sequentially strong-τU continuous for all α > 0 and

Rαf
τU→ u† as α→ 0 .

Theorem 4.9 (Convergent regularisation). Let the assumptions of Theorem 4.6 hold and assume
(for simplicity) that the clean data is in the range, i.e. f ∈ R(K), thus the J-minimising solution
u† exists and is unique. Moreover, assume that the topology τV is weaker than the norm topology
on V. Let α : (0,∞)→ (0,∞) be a parameter choice rule with

α(δ)→ 0, and
δ2

α(δ)
→ 0 as δ → 0 .

Let {δj}j∈N ⊂ [0,∞) be a sequence of noise levels with δj → 0 and {fj}j∈N ⊂ V be a sequence
of noisy observations with ‖f − fj‖V ≤ δj. Set αj := α(δj) and let {uj}j∈N be the sequence of
minimisers of Φαj ,fj , i.e. uαj := Rαjfj.

Then {uj}j∈N converges in τU and uj
τU→ u†. Moreover, we have J(uj)→ J(u†). In particular,

(as it implies pointwise convergence for exact data) Rα is a regularisation.



CHAPTER 4. VARIATIONAL REGULARISATION FOR LINEAR INVERSE PROBLEMS 71

Proof. From the definition of uj (minimising property) it follows that

0 ≤ 1

2
‖Kuj − fj‖2V + αjJ(uj)

≤ 1

2
‖Ku† − fj‖2V + αjJ(u†) ≤

δ2
j

2
+ αjJ(u†)→ 0

(4.10)

as δj , αj → 0. Thus limj→∞ ‖Kuj − fj‖V = 0, and then

‖Kuj − f‖V ≤ ‖Kuj − fj‖V + ‖fj − f‖V ≤ ‖Kuj − fj‖V + δj → 0 . (4.11)

Similarly, we see from (4.10) that

lim sup
j→∞

J(uj) ≤ lim sup
j→∞

δ2
j

2αj
+ J(u†) = J(u†) . (4.12)

Let α+ := maxj∈N αj be the largest regularisation parameter (which exists as αj → 0), then

lim sup
j→∞

Φα+,f (uj) = lim sup
j→∞

(
1

2
‖Kuj − f‖2V + α+J(uj)

)
≤ lim sup

j→∞

1

2
‖Kuj − f‖2V︸ ︷︷ ︸
=0

+ lim sup
j→∞

α+J(uj)︸ ︷︷ ︸
≤α+J(u†)

≤ α+J(u†) =: C <∞

This shows that there exists a j0 ∈ N such that for all j ≥ j0 we have that Φα+,f (uj) ≤ C + 1.
From the coercivity and the assumptions on the topology, it follows that {uj}j∈N ⊂ U has a
τU -convergent subsequence {ujk}k∈N with ujk → û with respect to τU . By the continuity of K
with respect to τU and τV we have that Kujk → Kû with respect to τV and with (4.11) and the
assumptions on τV it follows that Kujk → f with respect to τV , thus Kû = f . From the sequential
lower semi-continuity of J and (4.12) we have that

J(û) ≤ lim inf
k→∞

J(ujk) ≤ lim sup
k→∞

J(ujk) ≤ J(u†) . (4.13)

Thus, û is a J-minimising solution, which implies by its uniqueness that û = u†. Moreover, from
(4.13) and û = u† we can deduce that J(ujk)→ J(u†).

As in the proof of Theorem 4.8, all arguments can be applied to any subsequence of {uj}j∈N,
which shows that uj → u† in τU and J(uj)→ J(u†).

Remark 4.11. Similar to the stability we can get strong convergence if J satisfies the Radon-Riesz
property.

4.2.4 Convergence rates

In the last section we have proven convergence of the regularisation method in the topology τU
and not in the norm as in Chapter 3. Thus, we cannot expect to prove convergence rates in the
norm. However, it turns out we can prove convergence rates in the Bregman distance.

Definition 4.12. Let U be a Banach space and E : U → R∞ be a proper and convex functional.
Moreover, let u, v ∈ U , E(v) <∞ and p ∈ ∂E(v). Then the (generalised) Bregman distance of E
is defined as

Dp
E(u, v) := E(u)− E(v)− 〈p, u− v〉 . (4.14)
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Remark 4.12. It is easy to check that a Bregman distance somewhat resembles a metric as for
all u, v ∈ U , p ∈ ∂E(v) there is Dp

E(u, v) ≥ 0 and Dp
E(v, v) = 0. There are functionals where the

Bregman distance (up to a square root) is actually a metric: Let U be a Hilbert space and let
E(u) := 1

2‖u‖2U . ThenD
p
J(u, v) = 1

2‖u−v‖2U . However, there are functionals E whereDp
E(u, v) = 0

does not imply u = v, see the third example sheet for examples.

Theorem 4.10. Assume the setting of Theorem 4.6 that guarantees that the mapping Rα is well-
defined. Let f ∈ R(K) be clean data and u† be a solution of the inverse problem, i.e. f = Ku†,
and consider noisy data f δ ∈ V with ‖f − f δ‖V ≤ δ. Moreover, let u† satisfy the source condition

p = K∗w ∈ ∂J(u†)

and denote uδα := Rαf
δ. Then,

(a) Dp
J(uδα, u

†) ≤ δ2

2α
+ α‖w‖V∗δ +

α2‖w‖2V∗
2

,

(b)
1

2
‖Kuδα − f δ‖2V ≤ δ2 + 2α‖w‖V∗δ + 2α2‖w‖2V∗ , and

(c) J(uδα) ≤ δ2

2α
+ J(u†) .

Moreover, for the a-priori parameter choice rule α(δ) = δ we have

Dp
J(uδα, u

†) = O(δ), ‖Kuδα − f δ‖V = O(δ), and J(uδα) ≤ J(u†) +O(δ) .

Proof. From the minising property of uδα and Ku† = f it follows that

1

2
‖Kuδα − f δ‖2V + αJ(uδα) ≤ 1

2
‖Ku† − f δ‖2V + αJ(u†) ≤ δ2

2
+ αJ(u†) . (4.15)

From the non-negativity of the data term and (4.15) we derive assertion (c) as

J(uδα) ≤ 1

α

(
1

2
‖Kuδα − f δ‖2V + αJ(uδα)

)
≤ δ2

2α
+ J(u†) .

Moreover, by reordering the terms of (4.15) and completing Bregman distance, we get

1

2
‖Kuδα − f δ‖2V + αDp

J(uδα, u
†) ≤ δ2

2
− α〈p, uδα − u†〉

where we can further estimate

−〈p, uδα − u†〉 = −〈w,K(uδα − u†)〉 = −〈w,Kuδα − f〉
≤ ‖w‖V∗‖Kuδα − f‖V ≤ ‖w‖V∗

(
‖Kuδα − f δ‖V + δ

)
Combining the two yields

1

2
‖Kuδα − f δ‖2V + αDp

J(uδα, u
†) ≤ δ2

2
+ α‖w‖V∗δ + α‖w‖V∗‖Kuδα − f δ‖V

≤ δ2

2
+ α‖w‖V∗δ +

α2‖w‖2V∗
2γ

+
γ

2
‖Kuδα − f δ‖2V

where we used ab ≤ 1
2a

2 + 1
2b

2 for the second inequality. Thus, we derive

(1− γ)
1

2
‖Kuδα − f δ‖2V + αDp

J(uδα, u
†) ≤ δ2

2
+ α‖w‖V∗δ +

α2‖w‖2V∗
2γ

Choosing γ = 1 and γ = 1/2 yields the assertions (a) and (b).
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Remark 4.13. Note that we did not use the source condition for the assertion (c), thus it is true
for all solutions u† of the inverse problem, i.e. Ku† = f .

Remark 4.14. We did not assume that u† is a J-minimising solution. However, let U be a Hilbert
space and J(u) = 1

2‖u‖2U . Then the source condition is equivalent to K∗w = u† which is in turn
equivalent to u† ∈ R(K∗) = N (K)⊥. Thus, u† is the minimial norm solution.

4.3 Numerical implementation

4.3.1 Saddle point problems

In order to compute a solution to an inverse problem with variational regularisation, we have to
solve the minimisation problem

min
u∈U

{1

2
‖Ku− f‖2V + αJ(u)

}
.

However, for total variation regularisation for instance, the minimisation problem actually becomes
a saddle point problem

min
u∈U

sup
ϕ∈D(Ω,Rn)

{1

2
‖Ku− f‖2V + α

∫
Ω
u(x)divϕ(x) dx

}
.

where we have to minimise with respect to u but to maximise with respect to ϕ.
While for the total variation the minimisation problem is intrinsically a saddle point problem,

we can rewrite many other variational regularisation models as a saddle point problem by means
of the Fenchel conjugate.

Definition 4.13. Let U be a Banach space and let E : U → R∞ be proper, lower semi-continuous
and convex. Then the Fenchel conjugate or convex conjugate of E is defined to be the mapping
E∗ : U∗ → R∞ with

E∗(v) := sup
u∈U

{
〈v, u〉 − E(u)

}
.

Remark 4.15. It can be shown that in a Hilbert space the following identity holds: E∗∗ :=
(E∗)∗ = E. Thus in a Hilbert space, we can always reformulate our regularisation functional as

E(u) = sup
v∈U∗

{
〈v, u〉 − E∗(v)

}
.

Example 4.17. Let Ω ⊂ Rn, 1 < p, q < ∞ with 1
p + 1

q = 1. Moreover, let E : Lp(Ω) → R with
E(u) := 1

p‖u‖
p
p. Then the Fenchel conjugate of E is given by E∗ : Lq(Ω)→ R with E∗(v) = 1

q‖v‖
q
q.

In particular, the idenitity (1
2‖ · ‖22)∗ = 1

2‖ · ‖22 holds.

Definition 4.14. Let U ,V be Banach spaces. Let E : U → R∞, F ∗ : V∗ → R∞ be proper, convex
and lower semi-continuous functionals where F ∗ is the Fenchel conjugate of a functional F : V →
R∞ and D : U → V∗ be a linear and continuous operator. We can associate to any minimisation
problem

min
u∈U

{
E(u) + F ∗(Du)

}
(4.16)
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a corresponding saddle point problem

min
u∈U

sup
v∈V

{
Ψ(u, v) := E(u) + 〈Du, v〉 − F (v)

}
, (4.17)

the solution of which we call a saddle point.

Remark 4.16. If (u∗, v∗) is a saddle point, then u∗ solves the minimisation problem (4.16).

4.3.2 Optimality condition for saddle point problems

One can show that for any saddle point (u∗, v∗) we have for all (u, v) ∈ U × V that

Ψ(u∗, v) ≤ Ψ(u∗, v∗) ≤ Ψ(u, v∗)

which shows that

u∗ ∈ arg min
u∈U

Ψ(u, v∗) and v∗ ∈ arg max
v∈V

Ψ(u∗, v)︸ ︷︷ ︸
=arg minv∈V [−Ψ(u∗,v)]

.

Thus, as Ψ(u, v) is convex in u and −Ψ(u, v) is convex in v, we see that necessary and sufficient
optimality conditions for saddle point problems (4.17) are

0 ∈ ∂uΨ(u∗, v∗) and 0 ∈ ∂v[−Ψ(u∗, v∗)] (4.18)

In order to make better sense out of the optimality conditions, we have to discuss some more
properties of the subdifferential.

Definition 4.15. Let E : U → R be a mapping from the Banach space U and u ∈ U . If there
exists a A ∈ L(U ,R) that

lim
h→0

|E(u+ h)− E(u)−Ah|
‖h‖U

= 0 ,

holds true, then E is called Fréchet differentiable in x and E′(u) := A the Fréchet derivative in u.
If the Fréchet derivative exists for all u ∈ U , the operator E′ : U → U∗ is called Fréchet derivative.

Example 4.18. Let U be a Banach space and p ∈ U∗. Then the Fréchet derivative of p is given
by p′ = p.

Example 4.19. Let U ,V be Hilbert spaces, K ∈ L(U ,V), f ∈ V and E : U → R be defined as
E(u) := 1

2‖Ku− f‖2U . Then the Fréchet derivative of E is given by E′ : U → U∗ with

E′(u) = 〈K∗(Ku− f), ·〉U ,

thus by the Riesz representation theorem can be identified with K∗(Ku− f).

Proof. For any u ∈ U , an easy calculation shows that

1

2
‖K(u+ h)− f‖2U −

1

2
‖Ku− f‖2U = 〈Ku− f,Kh〉U +

1

2
‖Kh‖2U
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and thus with Ah := 〈K∗(Ku− f), h〉U we have that

|E(u+ h)− E(u)−Ah|
‖h‖U

=
|12‖K(u+ h)− f‖2U − 1

2‖Ku− f‖2U − 〈K∗(Ku− f), h〉U |
‖h‖U

=
|〈Ku− f,Kh〉U + 1

2‖Kh‖2U − 〈Ku− f,Kh〉U |
‖h‖U

=
1

2
‖Kh‖U ≤

1

2
‖K‖‖h‖U → 0

as ‖h‖U → 0.

Proposition 4.3. Let U be a Banach space and E : U → R be a convex functional that is Fréchet
differentiable in u ∈ U . Then

∂E(u) = {E′(u)} .

Proof. The proof is left as an exercise.

Proposition 4.4. Let U be a Banach space, F : U → R∞ convex, E : U → R E be convex and
Fréchet differentiable and G : U → R∞, G(u) := E(u)+F (u). Then for all u ∈ dom(G) = dom(F )
it holds

∂G(u) = E′(u) + ∂F (u) .

Proof. It is trivial to see that for any E,F : U → R∞ we have that

∂E + ∂F ⊂ ∂(E + F )

and thus it remains to show that

∂G(u) ⊂ E′(u) + ∂F (u) .

For any u ∈ dom(G), let p ∈ ∂G(u) and denote q := p−E′(u). We will show that q ∈ ∂F (u). For
any v ∈ U it holds from the subgradient condition for p that

F (v) = F (v) + E(v)− E(v) = G(v)− E(v)

≥ G(u) + 〈p, v − u〉 − E(v)

= F (u) + 〈q, v − u〉+ E(u)− E(v) + 〈E′(u), v − u〉︸ ︷︷ ︸
≥0, as E′(u) ∈ ∂E(u)

≥ F (u) + 〈q, v − u〉 ,

and the assertion is proven.

With the help of Proposition 4.4 we can rewrite the optimality conditions (4.18) as

0 ∈ ∂uΨ(u∗, v∗) = ∂u

{
E(u∗) + 〈Du∗, v∗〉 − F (v∗)

}
= ∂E(u∗) +D∗v∗

0 ∈ ∂v[−Ψ(u∗, v∗)] = −Du∗ + ∂F (v∗)

which simplify to

−D∗v∗ ∈ ∂E(u∗) and Du∗ ∈ ∂F (v∗) . (4.19)
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4.3.3 Proximal operators

Definition 4.16. Let U be a Hilbert space and let E : U → R∞ be proper, lower semi-continuous
and convex. Then we define the proximal operator proxE : U → U by

proxE(z) := arg min
u∈U

{1

2
‖u− z‖2U + E(u)

}
. (4.20)

Remark 4.17. It can be proven with tools from convex analysis, that the function to be minimised
in (4.20) is bounded from below and coercive. Intuitively, this is the case as convex functions are
not allow to decrease faster than linear functions. Therefore, the quadratic term dominates and
these two properties hold. Then the existence follows from the direct method and the uniqueness
from the strict convexity of the squared Hilbert space norm.

Remark 4.18. With the help of Proposition 4.4 we see that x = proxE(z) if and only if

0 ∈ ∂
(

1

2
‖x− z‖2U + E(x)

)
= x− z + ∂E(x) = (I + ∂E)(x)− z

which in turn is the case if and only if x = (I + ∂E)−1(z). It is interesting to see that despite
the mapping I + ∂E being multi-valued, its inverse is single-valued and can be computed by the
proximal operator.

Example 4.20. Let U ,V be Hilbert spaces, K ∈ L(U ,V), w ∈ U , f ∈ V and τ ≥ 0. Then the
proximal operator for τE(u) := τ

2‖Ku− f‖2V is given by

proxτE(z) = (I + τK∗K)−1(z + τK∗f) .

Proof. From Example 4.19 we see that the necessary and sufficient condition for the minimiser of
1
2‖ · −z‖2U + τE is given by

u− z + τK∗(Ku− f) = 0

and thus we derive

u = (I + τK∗K)−1(z + τK∗f) .

Example 4.21. Let Ω ⊂ Rn and U = L2(Ω,Rn). Moreover, let

C :=
{
u ∈ U | ‖u(x)‖2 ≤ 1 for almost every x ∈ Ω

}
.

Then the proximal operator for E : U → R∞, E = χC , i.e.

E(u) =

{
0 if u ∈ C
∞ else

is given by the orthogonal projection of u onto C, i.e.

[proxE(u)](x) =
u(x)

max(1, ‖u(x)‖2)
for almost every x ∈ Ω.
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4.3.4 Primal-dual hybrid gradient method

In this section we discuss how to solve a saddle point problem (4.17) numerically. Let (u∗, v∗) ∈
U × V be a saddle point, then the optimality conditions (4.19) are equivalent to the existence of
subgradients p∗ ∈ ∂E(u∗) and q∗ ∈ ∂F (v∗) so that

p∗ +D∗v∗ = 0 and q∗ −Du∗ = 0 . (4.21)

We approach finding a saddle point of (4.17) via the iterative approach(
pk+1 +D∗vk+1

qk+1 −Duk+1

)
+M

(
uk+1 − uk
vk+1 − vk

)
= 0 , (4.22)

for pk+1 ∈ ∂E(uk+1) and qk+1 ∈ ∂F (vk+1), and a 2× 2 operator-matrix M .

Remark 4.19. We observe that if (uk+1, vk+1) is a fixed point of the iterations, i.e. (uk+1, vk+1) =
(uk, vk), then (uk+1, vk+1) is a saddle point of (4.17).

An important question is how to choose M such that (4.22) results in a convergent algorithm
with relatively simple update steps for uk+1 and vk+1? A naïve choice for M could simply be
the identity; however, in that case the two updates for uk+1 and vk+1 are coupled which makes it
difficult to solve. Alternatively, we propose to use

M :=

(
1
τ I −D∗
−D 1

σ I

)
(4.23)

instead, with τ and σ being positive scalars. For this choice, (4.22) simplifies to the equations

pk+1 +D∗vk+1 + τ−1(uk+1 − uk)−D∗(vk+1 − vk) = 0

qk+1 −Duk+1 −D(uk+1 − uk) + σ−1(vk+1 − vk) = 0

which are equivalent to

uk+1 + τpk+1 = uk − τD∗vk

vk+1 + σqk+1 = vk + σD(2uk+1 − uk)
. (4.24)

Due to pk+1 ∈ ∂E(uk+1) and qk+1 ∈ ∂F (uk+1), Equations (4.24) can be rewritten as

uk+1 = (I + τ∂E)−1(uk − τD∗vk) ,
uk+1 = 2uk+1 − uk

vk+1 = (I + σ∂F )−1(vk + σDuk+1) ,

(4.25)

The iterates (4.25) are known as the primal-dual hybrid gradient method (PDHGM). Before we
prove actual convergence of those iterates to a saddle point of (4.17), we want to highlight what
makes PDHGM so useful. First of all, the particular choice of M (4.23) decouples uk+1 and
vk+1 in the update for uk+1, which makes updating uk+1 and vk+1 in an alternating fashion
possible. Secondly, PDHGM now only requires basic arithmetic operations, operator and adjoint
applications, and the evaluation of the proximal operations with respect to E and F . If these are
simple, the overall PDHGM is simple.
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Algorithm 1 Primal-Dual Hybrid Gradient Method.
Initialise: (u0, v0) ∈ U∗×V, step sizes: τ, σ > 0, with στ‖D‖2 < 1, number of iterations: K ∈ N
Iterate:
1: for k = 0, . . . ,K − 1 do
2: uk+1 = proxτE (uk + τD∗vk)
3: uk+1 = 2uk+1 − uk
4: vk+1 = proxσF (vk − σDuk+1)
5: end for

4.3.5 Convergence of PDHGM

Before we prove convergence of the iterates, we want to prove that M as defined in (4.23) is
positive definite under suitable conditions on τ and σ.

Lemma 4.11. Let τ, σ > 0 with τσ‖D‖2 < 1. Moreover, let U ,V be Hilbert spaces and denote the
Hilbert space W := U ×V with inner product 〈(u1, v1), (w1, w2)〉 := 〈u1, u2〉U + 〈v1, v2〉V . Consider
the self-adjoint operator M : W →W as defined in (4.23). Then, M is positive definite.

Proof. Let (u, v) ∈ U × V, (u, v) 6= 0 and denote û := τ−1/2u and v̂ := σ−1/2v. Without loss of
generality, let u 6= 0. Then

〈M(u, v), (u, v)〉 = 〈(τ−1u−D∗v,−Du+ σ−1v), (u, v)〉

=
1

τ
‖u‖2U +

1

σ
‖v‖2V − 2〈Du, v〉V

= ‖û‖2U + ‖v̂‖2V − 2 〈Dτ1/2û, σ1/2v̂〉V︸ ︷︷ ︸
=〈Dτ1/2σ1/2û,v̂〉V

≥ ‖û‖2U + ‖v̂‖2V − ‖D‖2τσ‖û‖2U − ‖v̂‖2V =
(1− ‖D‖2τσ)

τ
‖u‖2U > 0

Lemma 4.12. Let W be a Hilbert space and M : W → W be linear and self-adjoint. Then, for
all wk+1, wk, w∗ ∈W we have that

〈M(wk+1 − wk), wk+1 − w∗〉 =
1

2

(
‖wk+1 − wk‖2M − ‖wk − w∗‖2M + ‖wk+1 − w∗‖2M

)
,

where ‖w‖2M := 〈Mw,w〉.

Proof. Long but straight forward calculations lead to

‖wk+1 − wk‖2M − ‖wk − w∗‖2M + ‖wk+1 − w∗‖2M
= 〈M(wk+1 − wk), wk+1 − wk〉 − 〈M(wk − w∗), wk − w∗〉+ 〈M(wk+1 − w∗), wk+1 − w∗〉
= 〈M(wk+1 − wk), wk+1〉 − 〈M(wk+1 − wk), wk〉
− 〈M(wk − w∗), wk〉+ 〈M(wk − w∗), w∗〉
+ 〈M(wk+1 − w∗), wk+1〉 − 〈M(wk+1 − w∗), w∗〉

= 〈M(wk+1 − wk), wk+1〉 − 〈Mwk+1, wk〉
+ 〈Mw∗, wk〉+ 〈Mwk, w∗〉
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+ 〈M(wk+1 − w∗), wk+1〉 − 〈Mwk+1, w∗〉
= 2
[
〈Mwk+1, wk+1〉 − 〈Mwk+1, wk〉+ 〈Mw∗, wk〉 − 〈Mwk+1, w∗〉

]
= 2
[
〈Mwk+1, wk+1 − w∗〉 − 〈wk+1,Mwk〉+ 〈w∗,Mwk〉

]
= 2
[
〈Mwk+1, wk+1 − w∗〉 − 〈wk+1 − w∗,Mwk〉

]
= 2〈M(wk+1 − wk), wk+1 − w∗〉 .

Similar to the regularisation results in the last section, we will prove the convergence of PDHGM
in a weaker Bregman distance setting. However, here we are able to prove the results in the
symmetric Bregman distance.

Definition 4.17. Let U be a Banach space and E : U → R∞ be a functional defined on it. Let
u1, u2 ∈ dom(E), pi ∈ ∂E(ui), i = 1, 2. Then the (generalised) symmetric Bregman distance is
defined as

Dsymm
E (x1, x2) := Dp1

E (x2, x1) +Dp2
E (x1, x2) = 〈x1 − x2, p1 − p2〉 .

Note that we have omitted p1 and p2 in the notation of Dsymm
E only for the sake of brevity.

Theorem 4.11. Let U ,V be Hilbert spaces and W := U × V. Let τ, σ > 0, with τσ‖D‖2 < 1,
M : W → W defined via (4.23), w0 := (u0, v0) ∈ W,u0 = u0 and the sequence {wk}k∈N :=
{uk, vk}k∈N be defined via Algorithm 1. Let w∗ := (u∗, v∗) ∈ W be any saddle point of (4.17).
Then the following assertions hold.

(a) The sequence {wk}k∈N is bounded and ‖wk+1 − wk‖ → 0.

(b) The M -distance of wk to w∗ is not increasing, i.e.

‖wk+1 − w∗‖M ≤ ‖wk − w∗‖M .

(c) The sequence (uk, vk)k∈N converges to (u∗, v∗) in a Bregman sense, i.e.

lim
k→∞

Dsymm
E (uk, u∗) = 0 and lim

k→∞
Dsymm
F (vk, v∗) = 0 .

If in addition, dimW <∞ (e.g. after discretisation), then {wk}k∈N is convergent in norm and its
limit is a saddle point of (4.17).

Proof. Note that we can combine (4.21) and (4.22) to

0 =

(
pk+1 +D∗vk+1

qk+1 −Duk+1

)
+M

(
uk+1 − uk
vk+1 − vk

)
−
(
p∗ +D∗v∗

q∗ −Du∗
)

=

(
pk+1 − p∗ +D∗(vk+1 − v∗)
qk+1 − q∗ −D(uk+1 − u∗)

)
+M

(
uk+1 − uk
vk+1 − vk

)
(4.26)
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Taking the inner product the first term with (uk+1 − u∗, vk+1 − v∗) yields〈(
pk+1 − p∗ +D∗(vk+1 − v∗)
qk+1 − q∗ −D(uk+1 − u∗)

)
,

(
uk+1 − u∗
vk+1 − v∗

)〉
= 〈pk+1 − p∗ +D∗(vk+1 − v∗), uk+1 − u∗〉+ 〈qk+1 − q∗ −D(uk+1 − u∗), vk+1 − v∗〉
= 〈pk+1 − p∗, uk+1 − u∗〉+ 〈qk+1 − q∗, vk+1 − v∗〉
= Dsymm

E (uk+1, u∗) +Dsymm
F (vk+1, v∗) .

Furthermore, taking the inner product of the second term in (4.26) with wk+1 − w∗ (change the
notation to w := (u, v)) is non-positive and we can conclude with Lemma 4.12 that

〈M(wk+1 − wk), wk+1 − w∗〉 =
1

2

(
‖wk+1 − wk‖2M − ‖wk − w∗‖2M + ‖wk+1 − w∗‖2M

)
,

thus we have

Dsymm
E (uk+1, u∗) +Dsymm

F (vk+1, v∗)

+
1

2

(
‖wk+1 − wk‖2M − ‖wk − w∗‖2M + ‖wk+1 − w∗‖2M

)
= 0 (4.27)

As symmetric Bregman distances are non-negative, this yields

‖wk − w∗‖2M ≥ ‖wk+1 − w∗‖2M + ‖wk+1 − wk‖2M .

This has two implications. First, we have that

‖wk+1 − w∗‖M ≤ ‖wk − w∗‖M

which shows (b). Moreover, we have that ‖wk − w∗‖M ≤ ‖w0 − w∗‖M such that

‖wk‖M ≤ ‖w0 − w∗‖M − ‖w∗‖M <∞ .

As ‖ · ‖M defines an equivalent norm on W this shows that {wk}k∈N is bounded.
Summing up (4.27) from k = 0, . . . ,K − 1 yields

K−1∑
k=0

2
(
Dsymm
E (uk+1, u∗) +Dsymm

F (vk+1, v∗)
)

+

K−1∑
k=0

‖wk+1 − wk‖2M

=
K−1∑
k=0

(
‖wk − w∗‖2M − ‖wk+1 − w∗‖2M

)
= ‖w0 − w∗‖2M − ‖wK − w∗‖2M ≤ ‖w0 − w∗‖2M ,

thus taking the limit K →∞
∞∑
k=0

2
(
Dsymm
E (uk+1, u∗) +Dsymm

F (vk+1, v∗)
)

+

∞∑
k=0

‖wk+1 − wk‖2M ≤ ‖w0 − w∗‖2M <∞ .

This implies that

Dsymm
E (uk+1, u∗)→ 0, Dsymm

F (vk+1, v∗)→ 0, and ‖wk+1 − wk‖M → 0 ,



CHAPTER 4. VARIATIONAL REGULARISATION FOR LINEAR INVERSE PROBLEMS 81

and thus proves (a) and (c).
Let now W be finite dimensional. Then the boundedness of {wk}k∈N implies that there exists

a convergent subsequence {wkj}j∈N and w∞ ∈ W with wkj → w∞. As wk+1 − wk → 0 we also
have that wkj+1 → w∞ which shows that w∞ is a fixed point of the iteration and thus a saddle
point of (4.17), see Remark 4.19. Let ε > 0. By the convergence of the subsequence there exists a
j0 ∈ N so that ‖wkj0 −w∞‖M < ε. But as w∞ is a saddle point, this means by assertion (b) that
for all k > kj0 we have that

‖wk − w∞‖M ≤ ‖wkj0 − w∞‖M < ε

which shows that wk → w∞.

Remark 4.20. For certain functionals, the convergence of the symmetric Bregman distance im-
plies convergence in norm. E.g. E(u) = 1

2‖u‖2U .

4.3.6 Deconvolution with total variation regularisation

An example for total variation regularisation of the inverse problem of image convolution is given
as Exercise 2 on Exercisesheet 3.

Example 4.22. Hence, PDHGM reads as

uk+1 = (I + τK∗K)−1(uk + τ(divvk +K∗f)) (4.28)

uk+1 = 2uk+1 − uk (4.29)

vk+1
j =

vkj + σ∇juk+1

max(1, ‖vk + σ∇uk+1‖2)
for all j ∈ {1, . . . , n} (4.30)

in case of total variation regularisation, due to ∇∗ = −div. Note that in case of ROF-denoising as
proposed in [12], Equation (4.28) simplifies to

uk+1 =
uk + τ(divvk + f)

1 + τ
.

Note that for real world applications one obviously has to find appropriate discretisations of K
and ∇.
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Chapter 5

Inverse problems with non-linear
forward operator

To conclude this lecture we want to look into inverse problems with non-linear forward operator.
For simplicity, we stick to the Hilbert space setting, and consider inverse problems of the form

F (u) = f δ , (5.1)

for a non-linear operator F : U → H, where both U andH are Hilbert spaces. Typical examples for
non-linear inverse problems are parameter identification problems of partial differential equations.

Example 5.1 (Groundwater filtration). The problem of groundwater filtration can be modelled
as the inverse problem (5.1) for which F is the operator that maps the hydraulic permittivity u
to the solution of the partial differential equation (PDE)

div(u∇f) = g ,

under suitable boundary conditions. Here f represents the unknown solution of the PDE, and g
is a given source.

Example 5.2 (Impedance tomography). An inverse problem very relevant in imaging and closely
related to the above parameter identification problem of ground water filtration is impedance
tomography. In its simplest form, the mathematical description of the forward process can be
described as the solution of the elliptic partial differential equation

div(u∇g) = 0 in Ω (5.2)

where g is the electric potential and u the conductivity, both modelled as functions in some function
space over a spatial domain Ω. On the boundary ∂Ω, the electric potential g directly relates to
the voltages h applied to the system, i.e. we have

g = h on ∂Ω .

The measured currents over the boundary for a specific voltage function h are then given as

fh = u
∂g

∂n
on ∂Ω .
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Here ∂g
∂n denotes the normal derivative of g. Hence, if the functions u and h are given (in suitable

function spaces), the forward problem consists of applying the so-called Dirichlet-to-Neumann map

Λu : g 7→ fh ,

which is a linear operator due to the linearity of (5.2) for given u. The inverse problem of
impedance tomography, also known as the inverse conductivity problem, aims at reconstructing the
conductivity u on the whole domain Ω based on a known voltage function h and measured currents
fh on ∂Ω. Due to the multiplication of u with g in (5.2) the inverse problem is automatically non-
linear.

For the setup (5.1), all regularisation approaches discussed in the previous part of this lecture
are useless, due to the non-linearity of F . However, we can pick a specific regularisation strategy
and try to adapt it to the non-linear case, similar to the generalisations of Tikhonov regularisation
in Section 4. Due to its explicit nature, we are going to pick the Landweber iteration as introduced
in Section 3.2.6, and define the non-linear Landweber iteration as follows:

uk+1 = uk − τk(F ′(uk))∗
(
F (uk)− f δ

)
, (5.3)

where {τk}k∈N is a sequence of positive parameters, and (F ′(uk))∗ is the adjoint operator of the
Fréchet derivative of F at uk. It is straight forward to see that (5.3) is nothing else but gradient
descent applied to the minimisation of the (generally non-convex) functional

E(u) :=
1

2
‖F (u)− f δ‖2V .

In the following we want to prove that (5.3) does converge to a critical point û of E, i.e. 0 = E′(û) =
(F ′(û))∗(F (û)− f δ). In order to do so, we need to make some assumptions on E (respectively on
F ) first. The first assumption that is fairly standard is that the Fréchet derivative of the functional
E is Lipschitz continuous, i.e. there exists a constant 0 < L <∞ such that the inequality

‖E′(u)− E′(v)‖U ≤ L‖u− v‖U (5.4)

is satisfied for all u, v ∈ U .
Given that the domain of E is convex, which is certainly true if the domain is a Hilbert space,

we can conclude the following useful result.

Lemma 5.1. Let U be a Hilbert space, E : U → R be a Fréchet-differentiable functional, and let
E′ be Lipschitz continuous with constant L. Then the functional G(u) := L

2 ‖u‖2U −E(u) is convex.

Proof. From the Cauchy-Schwarz inequality and (5.4) we obtain

〈E′(u)− E′(v), u− v〉 ≤ L‖u− v‖2U ,

which we can rewrite to

0 ≤ 〈Lu− E′(u)− (Lv − E′(v)), u− v〉 = Dsymm
G (u, v) ,

due to the convexity of U , dom(G) = U and G′(u) = Lu−E′(u) for all u ∈ U . Given that Dsymm
G is

non-negative it makes it a symmetric Bregman distance, which further implies convexity of G.
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Note that convexity of G(u) = L
2 ‖u‖U − E(u) implies the very useful Lipschitz estimate

E(u) ≤ E(v) + 〈E′(v), u− v〉+
L

2
‖u− v‖2U , (5.5)

for all u, v ∈ U .

Next we want to assume that E satisfies what is known as the Kurdyka-Łojasiewicz (KL)
property. Let η ∈]0,∞]. We consider functions ϕ : [0, η[→ R≥0 of the class of all concave and
continuous functions that satisfy

(a) ϕ(0) = 0.

(b) ϕ is C1 on ]0, η[ and continuous at 0.

(c) ϕ′(s) > 0 for all s ∈]0, η[.

Then the KL property is defined as follows.

Definition 5.1 (Kurdyka-Łojasiewicz property). Let E : U → R be a Fréchet-differentiable func-
tional with its Fréchet derivative E′ being well-defined for all u ∈ U .

(a) The functional E fulfills the KL property at point u ∈ U if there exists η ∈]0,∞[, a neigh-
bourhood U of u and a function ϕ satisfying the conditions above, such that for all

u ∈ U ∩ {u | E(u) < E(u) < E(u) + η}

the inequality

ϕ′(E(u)− E(u))‖E′(u)‖U ≥ 1 (5.6)

is satisfied.

(b) If E satisfies the KL property at each point u ∈ U , E is called a KL functional.

Example 5.3. In order to clarify what (5.6) means we want to consider the classic example from
Stanisław Łojasiewicz who considered functions ϕ of the form ϕ(x) = 1

1−θ |x|1−θ for 0 < θ < 1.
It is easy to see that this choice of ϕ satisfies the above conditions, and that (5.6) in this case
transforms to

|E(u)− E(u)|θ ≤ ‖E′(u)‖U .

Hence, we obtain that the Fréchet-derivative of E is bounded from below by its functional values,
which is a very useful estimate as it implies that the closer we get to a critical point, the closer we
also get to the functional evaluation of this critical point.

Example 5.4 (KL functions). If we assume for a moment that E is simply a function, it can be
shown that surprisingly many functions E already satisfy (5.6). Functions of the following classes
are known to satisfy (5.6) (see [9]):

(a) Semi-algebraic, e.g. E(x, y) =
√
x4 + y4.

(b) Globally subanalytic, e.g. E(x, y) = y
sinx , for x ∈]0, π[.
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(c) (R, exp)-definable, e.g. f(x, y) = x2 exp
(
− y2

x4+y2

)
lnx.

(d) (Ran, exp)-definable, e.g. E(x, y) = x
√

2 ln(sin y).

(e) (RR
an)-definable, e.g. E(x, y) = x

√
2 exp

(
x
y

)
, 0 < x < y < 1.

Bolte et al. have further transferred the KL condition concept from functions to function spaces
(cf. [5]), which is why we can also apply the concept to functionals.

Assuming that E is a KL functional with Lipschitz continuous Fréchet-derivative E′ with
Lipschitz constant L, we now want to prove that (5.3) satisfies the three following properties:

(a) We can find a positive constant ρ1 such that the sufficient decrease property

ρ1‖uk+1 − uk‖2U ≤ E(uk)− E(uk+1) ∀k = 0, 1, . . .

is satisfied.

(b) Assume that the sequence (5.3) is bounded. Then we can find a positive constant ρ2 such
that the gradient lower bound for the iterates gap, i.e.

‖∇E(uk)‖U ≤ ρ2‖uk+1 − uk‖U ∀k = 0, 1, . . . ,

holds true.

(c) Together with the KL property we then show that the generated sequence {uk}k∈N is a
Cauchy sequence.

These three properties will be sufficient to prove global convergence, i.e. regardless of how we
start, the iterates of (5.3) will always converge to a critical point of E.

Theorem 5.1 (Sufficient decrease property). Let E : U → R be a Fréchet-differentiable functional
with locally Lipschitz continuous Fréchet-derivative E′ with Lipschitz constant L > 0. If we choose
0 < τk < 2/L such that

ρ1‖uk+1 − uk‖U ≤
(

1

τk
− L

2

)
‖uk+1 − uk‖2U (5.7)

holds true for all k and a fixed constant 0 < ρ <∞, then the iterates of the non-linear Landweber
iteration (5.3) satisfy the descent estimate

E(uk+1) + ρ1‖uk+1 − uk‖2U ≤ E(uk) . (5.8)

In addition, we observe

lim
k→∞

‖uk+1 − uk‖U = 0 .

Proof. First of all, we rewrite the Landweber iteration (5.3) in terms of E′, i.e

τkE′(uk) + uk+1 − uk = 0 ,

and then take the Hilbert space inner product with uk+1 − uk, which yields

τk〈E′(uk), uk+1 − uk〉+ ‖uk+1 − uk‖2U = 0 .
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Thus, we obtain

〈E′(uk), uk+1 − uk〉 = − 1

τk
‖uk+1 − uk‖2U . (5.9)

Due to the local Lipschitz-continuity of E′ we can use (5.5) to further estimate

E(uk+1) ≤ E(uk) + 〈uk+1 − uk, E′(uk)〉+
L

2
‖uk+1 − uk‖2U .

Together with (5.9) we therefore obtain the estimate

E(uk+1) +

(
1

τk
− L

2

)
‖uk+1 − uk‖2U ≤ E(uk) .

Using (5.7) then allows us to conclude

0 ≤ ρ1‖uk+1 − uk‖2U ≤ E(uk)− E(uk+1) ;

hence, summing up over all N iterates and telescoping yields

N∑
k=0

ρ1‖uk+1 − uk‖2U ≤
N∑
k=0

E(uk)− E(uk+1) ,

= E(u0)− E(uN+1) ,

≤ E(u0)− E <∞ .

Taking the limit N →∞ therefore implies

∞∑
k=0

ρ1‖uk+1 − uk‖2U <∞ ,

and thus, we have limk→∞ ‖uk+1 − uk‖2U = 0 due to ρ1 > 0.

The next step is to show that E′(uk) is bounded from above for every k by some positive
multiple of ‖uk+1 − uk‖U , as we then can also conclude ‖E′(uk)‖U → 0.

Theorem 5.2 (A gradient lower bound for the iterates gap). The iterates of the non-linear
Landweber iteration (5.3) satisfy

‖E′(uk)‖U ≤ ρ2‖uk+1 − uk‖U , (5.10)

for ρ2 := 1/τ and 0 < τ := mink τ
k.

Proof. From (5.3) we trivially observe

‖E′(uk)‖U =
1

τk
‖uk+1 − uk‖U ≤ ρ2‖uk+1 − uk‖U ,

for ρ2 as defined above.

Together with the KL property we now have everything that is necessary in order to prove
global convergence of (5.3).
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Theorem 5.3 (Global convergence). Suppose that E is a weakly continuous KL functional in the
sense of Definition 5.1, with Lipschitz continuous Fréchet-derivative E′ with Lipschitz constant
L > 0. Let {uk}k∈N be a sequence generated by (5.3), which is further assumed to be bounded.
Then the sequence {uk}k∈N has a strongly convergent subsequence that converges to a critical point
û with E′(û) = 0.

Proof. Given that {uk}k∈N is assumed to be bounded, we know that there exists a weakly con-
vergent subsequence {ukj}j∈N with ukj ⇀ u. Since E is assumed to be weakly continuous we also
have

lim
j→∞

E(ukj ) = E(u) . (5.11)

If there exists an index q such that E(ukq) = E(u), then (5.8) already implies ukq+1 = ukq , and we
can show via induction that the sequence {ukj}j∈N is stationary, trivially implying finite length
and convergence to a critical point.

If such an index does not exist, we know from (5.8) that {E(ukj )}j∈N is a non-increasing
sequence, therefore (5.11) implies E(u) < E(ukj ) for all j > 0. We also know from (5.11) that
there exist j1 ∈ N and η ∈]0,∞[ such that E(ukj ) < E(u)+η for all j > j1. Due to the convergence
of the sub-sequence {ukj}j∈N there also exists a j2 such that ‖ukj − u‖U < ε for all j > j2. Hence,
the sequence ukj belongs to the intersection {u | ‖u− u‖U < ε} ∩ {u | E(u) < E(u) < E(u) + η}
for all j > l := max(j1, j2), which implies (5.6) for all j > l.

(a) Due to the previous considerations we have for any j > l, for some l ∈ N, the estimate

ϕ′(E(ukj )− E(u))‖E′(ukj )‖U ≥ 1 ,

which makes sense due to E(ukj ) > E(u) for all j > l. We then obtain from (5.10) the
estimate

ϕ′(E(ukj )− E(u)) ≥ ρ−1
2 ‖ukj+1 − ukj‖−1

U .

From the concavity of ϕ we also estimate

ϕ(E(ukj )− E(u))− ϕ(E(ukj+1)− E(u))

E(ukj )− E(ukj+1)
≥ ϕ′(E(ukj )− E(u)) .

Together with the previous estimate, this yields

ϕ(E(ukj )− E(u))− ϕ(E(uk+1)− E(u))

E(ukj )− E(ukj+1)
≥ ρ−1

2 ‖ukj+1 − ukj‖−1
U .

With Theorem 5.1 we can therefore conclude

ϕ(E(ukj )− E(u))− ϕ(E(ukj+1)− E(u))

ρ1‖ukj+1 − ukj‖2U
≥ ρ−1

2 ‖ukj+1 − ukj‖−1
U ,

respectively

ρ1

ρ2
‖ukj+1 − ukj‖U ≤ ϕ(E(ukj )− E(u))− ϕ(E(ukj+1)− E(u)) .
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Summing up from j = 0 to j = N then yields

N∑
j=0

‖ukj+1 − ukj‖U ≤
ρ1

ρ2

(
ϕ(E(uk0)− E(u))− ϕ(E(ukN+1)− E(u))

)
≤ ρ1

ρ2
ϕ(E(uk0)− E(u)) <∞ .

Hence, we can conclude
∑∞

j=0 ‖ukj+1 − ukj‖U <∞ by taking the limit N →∞.

(b) The property
∑∞

j=0 ‖ukj+1 − ukj‖U < ∞ implies that each ukr and uks with s > r > l are
bounded w.r.t the U norm. This follows from

‖ukr − uks‖U =

∥∥∥∥∥∥
s−1∑
j=r

ukj+1 − ukj
∥∥∥∥∥∥
U

≤
s−1∑
j=r

‖ukj+1 − ukj‖U

Since
∑∞

j=0 ‖ukj+1−ukj‖U <∞ implies liml→∞
∑∞

j=l+1 ‖ukj+1−ukj‖U = 0, we can conclude
that {ukj}j∈N is a Cauchy sequence in U . As the set of limit points of a Fréchet-differentiable
functional is non-empty this concludes the proof.

Remark 5.1. For dim(U) < ∞ Theorem 5.3 can be extended to a global (strong) convergence
result for all {uk}k∈N. In that case it is obviously also sufficient to just assume that E is Fréchet-
differentiable and therefore continuous, and not just weakly continuous.

As we know from the case of linear F , converging to a critical point is obviously only desirable
if f δ ∈ D(F †). For non-linear F it is not even clear how to extent the concept of generalised
inverses to make sense of an expression such as f δ ∈ D(F †). But even if we were, it is quite
unlikely that f δ would satisfy such a smoothness condition, which is why the iteration has to
be stopped after a finite number of iterations. Thanks to Theorem 5.1 it seems reasonable to
use Morozov’s discrepancy principle (3.10) as a stopping criterion, similar to Chapter 3.2.6. With
additional restrictions on the non-linearity of F we can show that (5.3) together with (3.10) satisfies
a descent result in analogy to Lemma 3.5. In order to do so, we need to establish the definition of
a neighbourhood first.

Definition 5.2. A neighbourhood Br(u0) of u0 ∈ U is defined as the set

Br(u0) := {u ∈ U | ‖u0 − u‖U ≤ r} ⊂ U ,

for a positive constant r > 0.

Now we can start proving a result similar to Lemma 3.5 under the additional assumption of
the tangential cone condition.

Lemma 5.2. Let F : U → H be smooth and continuous. Assume that for u0 ∈ U there exists
r > 0 with B2r(u0) ⊂ U such that a solution u† ∈ Br(u0) to F (u†) = f with ‖f − f δ‖H exists, and
that for all u, ũ ∈ B2r(u0) the conditions

‖F ′(u)‖L(U ,H) ≤ 1 , (5.12)

‖F (u)− F (ũ)− F ′(ũ)(u− ũ)‖H ≤ µ‖F (u)− F (ũ)‖H for 0 < µ <
1

2
, (5.13)
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are met. If uδk as an iterate of (5.3) satisfies uδk ∈ Br(u†) for δ ≥ 0 and

‖F (uδk)− f δ‖H ≥ 2
1 + µ

1− 2µ
δ , (5.14)

then this immediately implies

‖uδk+1 − u†‖U ≤ ‖uδk − u†‖U ,

and consequently uδk+1 ∈ Br(u†) ⊂ B2r(u0).

Proof. Using (5.3) we obtain

‖uδk+1 − u†‖2U − ‖uδk − u†‖2U = 2〈uδk+1 − uδk, uδk − u†〉+ ‖uδk+1 − uδk‖2U
= 2〈F ′(uδk)∗(f δ − F (uδk)), u

δ
k − u†〉+ ‖F ′(uδk)∗(f δ − F (uδk))‖2U

≤ 2〈f δ − F (uδk), F
′(uδk)(u

δ
k − u†)〉+ ‖f δ − F (uδk)‖2H

= 2〈f δ − F (uδk), f
δ − F (uδk) + F ′(uδk)(u

δ
k − u†)〉 − ‖f δ − F (uδk)‖2H

≤ ‖f δ − F (uδk)‖H
(

2‖f δ − F (uδk) + F ′(uδk)(u
δ
k − u†)‖H

−‖f δ − F (uδk)‖H
)
,

where we have made use of (5.12). Applying the triangular inequality to the first term in the
bracket yields

‖f δ − F (uδk) + F ′(uδk)(u
δ
k − u†)‖H ≤ δ + ‖F ′(uδk)(uδk − u†)‖H ,

≤ δ + µ‖F (uδk)− F (u†)‖H ,
≤ (1 + µ)δ + µ‖F (uδk)− f δ‖H ,

thanks to F (u†) = f and condition (5.13). Hence, we obtain the overall estimate

‖uδk+1 − u†‖2U − ‖uδk − u†‖2U ≤ ‖f δ − F (uδk)‖H
(

2(1 + µ)δ − (1− 2µ)‖f δ − F (xδk)‖H
)
≤ 0 ,

due to (5.14).

Theorem 5.4. Let the same assumptions hold true as in Lemma 5.2. We further assume that the
stopping index k∗(δ, f δ) is chosen according to the discrepancy principle (3.10) with η satisfying

2 < 2
1 + µ

1− 2µ
< η .

Then we have

k∗(δ, f δ) < Cδ−2 ,

for a constant C > 0.

Proof. The initial uδ0 = u0 ∈ B2r(u0) and the choice of η allow us to apply Lemma 5.2; we
particularly obtain the estimate

‖uδk+1 − u†‖2U − ‖uδk − u†‖2U < ‖f δ − F (uδk)‖H
(

2

µ
(1 + µ)δ − (1− 2µ)

)
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for all k < k∗(δ, f δ). Summing up over all k ∈ {0, . . . , k∗(δ, f δ)} therefore yields(
1− 2µ− 2

η
(1 + µ)

) k∗(δ,fδ)−1∑
k=0

‖F (uδk)− f δ‖2H < ‖u0 − u†‖2U − ‖uδk∗(δ,fδ) − u†‖2U .

Since we have ‖F (uδk)− f δ‖H > ηδ for all k < k∗(δ, f δ), we can further estimate

k∗(δ, f δ)η2δ2 <

k∗(δ,fδ)−1∑
k=0

‖F (uδk)− f δ‖2H <
(

1− 2µ− 2

η
(1 + µ)

)−1

‖u0 − u†‖2U ,

which yields the desired estimate for C := 1/((1− 2µ)η2 − 2(1 + µ)η)‖u0 − u†‖2U > 0.

In order to show that the non-linear Landweber iteration in combination with Morozov’s dis-
crepancy principle is behaving like the equivalent of convergent regularisation methods for non-
linear operators we need to verify the following lemma.

Lemma 5.3. Let k∗(δ, f δ) be chosen according to the discrepancy principle (3.10). If an iterative
method satisfies

k̃ := k̃(0, f) <∞, uk̃ = u† or k̃ =∞, uk → u† for k →∞, (5.15)

and the two conditions

‖uδk − u†‖U ≤ ‖uδk−1 − u†‖U , (5.16)

lim
δ→0
‖uδk − uk‖U = 0 , (5.17)

for all k ∈ {1, . . . , k∗(δ, f δ)}, then it also satisfies

lim sup
δ→0

{∥∥∥uk∗(δ,fδ) − u†∥∥∥U | f δ ∈ H, ‖f δ − f‖H ≤ δ} . (5.18)

Proof. We know by assumption that F : U → H is continuous. Let {f δj}j∈N ⊂ H with ‖f −
f δj}H ≤ δj and δj → 0 for j →∞, and define k∗j := k∗(δj , f δj ).

We first investigate the case for which {k∗j }j∈N has a finite limiting point k∗ < ∞. With a

subsequence argument we can argue k∗j = k∗ for all j ∈ N, and therefore uδjk∗ → uk∗ for j → ∞
due to (5.17). Since each k∗j are chosen according to the discrepancy principle (3.10), we further
know

‖F (u
δj
k∗)− f δj‖H ≤ ηδj

for all j ∈ N. Taking the limit j → ∞ on both sides yields F (uk∗) = f , due to the continuity of
F , which already implies (5.18).

Otherwise we have k∗j → ∞. With another subsequence argument we can assume that k∗j is
monotonically increasing. From (5.16) we therefore obtain

‖uδjk∗j − u
†‖U ≤ ‖uδjk∗i − u

†‖U ≤ ‖uδjk∗i − uk∗i ‖U + ‖uk∗i − u
†‖U

for all i ≤ j. Let ε > 0 be arbitrary, then there exists M > 0 such that ‖uk∗M − u
†‖U ≤ ε

2 , due
to (5.15). On the other hand we can also conclude the existence of an index N > 0 such that
‖uδjk∗M − uk∗M ‖U ≤

ε
2 is satisfied for all j ≥ N , due to (5.17) for k = k∗M . This also implies (5.18),

which concludes the proof.
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Proposition 5.1. Without proof we want to state that for noise-free data and the assumption of
the conditions (5.12) and (5.13) we are not just able to show strong convergence of sub-sequences
as in Theorem 5.3, but strong convergence for the entire sequences.

Theorem 5.5. Let the same assumptions hold true as in Lemma 5.2. Then uk∗(δ,fδ) → u† for
F (u†) = f and δ → 0.

Proof. We apply Lemma 5.3. Condition (5.15) follows from Proposition 5.1. Since F and F ′ are
assumed to be continuous, we further know that the right-hand-side of (5.3) depends continuously
on uk, for fixed k ∈ N. Hence, for δ → 0 the right-hand-side of (5.3) for uδj+1 converges to the
right-hand-side of (5.3) for uj+1, for all j ≤ k, which implies uδj+1 → uj+1 and consequently (5.17).
As the monotonicity (5.16) follows from Lemma 5.2, we can further conclude (5.18).
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