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Chapter 1

Introduction to inverse problems

Solving an inverse problem is the task of computing an unknown quantity from observed
(and potentially noisy) measurements. Typically, these two are related via a forward
model. Inverse problems appear in a variety of fields such as physics, biology, medicine,
engineering, and finance, and include—for instance—tomography (e.g. computed tomog-
raphy (CT)), machine learning, computer vision, and image processing. In this lecture
course we address mathematical aspects of linear inverse problems that are needed to find
stable and meaningful solutions.

The main focus of this lecture is the solution of the operator equation

Ku = f (1.1)

with given measurement data f for the unknown quantity u. Here, K : U → V denotes a
linear operator that maps from a space U to a space V. We will restrict ourselves to the
study of bounded linear operators between Hilbert spaces.

Computing a solution to (1.1) is typically not straightforward in most relevant appli-
cations for three basic reasons:

• a solution might not exist,

• if it exists it might not be unique,

• small errors (such as noise) in the measurements get heavily amplified.

The latter has the potential to render solutions useless without proper treatment.
In the sense of Hadamard the problem (1.1) is called well-posed if

• for all input data there exists a solution to the problem, i.e. for all f ∈ V there exists
a u ∈ U with Ku = f .

• for all input data this solution is unique, i.e. u 6= v implies Kv 6= f .

• the solution of the problem depends continuously on the input datum, i.e. for all
{uk}k∈N with Kuk → f implies uk → u.

If any of these conditions is violated, problem (1.1) is called ill-posed. In the following we
will see that many relevant inverse problems are ill-posed.1

1In fact, the name ill-posed problems may be a more suitable name for this lecture, as the real challenge
is to deal with the ill-posedness of these problems. However, the name inverse problems became more
widely accepted.

7
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1.1 Examples

In the following we are going to present various examples of inverse problems and highlight
the challenges in solving them.

1.1.1 Matrix inversion

One of the most simple (class of) inverse problems that arises from (numerical) linear
algebra is the solution of linear systems. These can be written in the form of (1.1) with
u ∈ Rn and f ∈ Rn being n-dimensional vectors with real entries and K ∈ Rn×n being a
matrix with real entries. We further assume K to be symmetric, positive definite.

We know from the spectral theory of symmetric matrices that there exist eigenvalues
λ1 ≥ λ2 ≥ . . . ≥ λn > 0 and corresponding (orthonormal) eigenvectors kj ∈ Rn for
j ∈ {1, . . . , n} such that K can be written as

K =
n∑
j=1

λjkjk
>
j . (1.2)

It is well known from numerical linear algebra that the condition number κ = λ1/λn is a
measure of how stable (1.1) can be solved, which we will illustrate in the following.

We assume that we measure f δ instead of f , with ‖f − f δ‖2 ≤ δ‖K‖ = δλ1, where
‖ · ‖2 denotes the Euclidean norm of Rn and ‖K‖ the operator norm of K (which equals
the largest eigenvalue of K). Then, if we further denote with uδ the solution of Kuδ = f δ,
the difference between uδ and the solution u to (1.1) is

u− uδ =

n∑
j=1

λ−1
j kjk

>
j (f − f δ).

Therefore, we can estimate

‖u− uδ‖22 =
n∑
j=1

λ−2
j ‖kj‖22︸ ︷︷ ︸

=1

|k>j (f − f δ)|2 ≤ λ−2
n ‖f − f δ‖22,

due to the orthonormality of eigenvectors, the Cauchy-Schwarz inequality, and λn ≤ λj .
Thus, taking square roots on both sides yields the estimate

‖u− uδ‖2 ≤ λ−1
n ‖f − f δ‖2 ≤ κδ.

Hence, we observe that in the worst case an error δ in the data y is amplified by the con-
dition number κ of the matrix K. A matrix with large κ is therefore called ill-conditioned.
We want to demonstrate the effect of this error amplification with a small example.

Example 1.1. Let us consider the matrix

K =

(
1 1
1 1001

1000

)
,

which has eigenvalues λj = 1 + 1
2000 ±

√
1 + 1

20002
, condition number κ ≈ 4002 � 1, and

operator norm ‖K‖ ≈ 2. For given data f = (1, 1)> the solution to Ku = f is u = (1, 0)>.
Now let us instead consider perturbed data f δ = (99/100, 101/100)>. The solution uδ

to Kuδ = f δ is then uδ = (−19.01, 20)>.
Let us reflect on the amplification of the measurement error. By our initial assumption

we find that δ = ‖f − f δ‖/‖K‖ ≈ ‖(0.01,−0.01)>‖/2 =
√

2/200. Moreover, the norm of
the error in the reconstruction is then ‖u− uδ‖ = ‖(20.01, 20)>‖ ≈ 20

√
2. As a result, the

amplification due to the perturbation is ‖u− uδ‖/δ ≈ 4000 ≈ κ.
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1.1.2 Differentiation

Another classic inverse problem is differentiation of data. Assume we are given a function
f with f(0) = 0 for which we want to compute u = f ′. For f sufficiently smooth, these
conditions are satisfied if and only if u and f satisfy the operator equation

f(y) =

∫ y

0
u(x) dx,

which can be written as the operator equation Ku = f with the linear operator (K·)(y) :=∫ y
0 ·(x) dx.

As before, we assume that instead of f we measure a perturbed version f δ = f+nδ with
f ∈ C1([0, 1]) and noise nδ ∈ L∞([0, 1]). It is obvious that the derivative u exists if the
noise nδ is differentiable. However, even in the (unrealistic) case that nδ is differentiable,
the error in the derivative can become arbitrarily large as we will see.

Consider a sequence of noise functions nδ ∈ C1([0, 1]) ↪→ L∞([0, 1]) with

nδ(x) := δ sin

(
kx

δ

)
, (1.3)

for a fixed but arbitrary k > 0. Then, the solution to Kuδ = f δ is

uδ(x) = f ′(x) + k cos

(
kx

δ

)
.

Observe that, for ‖nδ‖L∞([0,1]) = δ → 0, we on the other hand have

‖u− uδ‖L∞([0,1]) = ‖(nδ)′‖L∞([0,1]) = k.

Thus, despite the error in the data becoming arbitrarily small (in the L∞ norm), the error
in the derivative can become arbitrarily big (in dependence of k). In any case, for k > 0
we observe that the solution does not depend continuously on the data.

On the other hand, considering a decreasing error in the norm of the Banach space
C1([0, 1]) yields a different result. If we have a sequence of noise functions (other than
those defined in equation (1.3)) with ‖nδ‖C1([0,1]) ≤ δ → 0 instead, we can conclude

‖u− uδ‖L∞([0,1]) = ‖(nδ)′‖L∞([0,1]) ≤ ‖nδ‖C1([0,1]) → 0.

In contrast to the previous example the sequence of functions nδ(x) := δ sin(kx) for
instance satisfies

‖nδ‖C1([0,1]) = sup
x∈[0,1]

|nδ(x)|+ sup
x∈[0,1]

|(nδ)′(x)| = (1 + k)δ → 0.

However, for a fixed δ the bound on ‖u−uδ‖L∞([0,1]) can obviously still become fairly large
compared to δ, depending on how large k is.

1.1.3 Deconvolution

An interesting problem that occurs in many imaging, image- and signal processing ap-
plications is the deblurring or deconvolution of signals from a known, linear degradation.
Deconvolution of a signal f can be modelled as solving the inverse problem of the convo-
lution, which reads as

f(y) = (Ku)(y) :=

∫
Rn
u(x)g(y − x) dx, (1.4)
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Here, f denotes the blurry image, u is the (unknown) true image, and g is the function
that models the degradation. Due to the Fourier convolution theorem we can rewrite (1.4)
to

f = (2π)
n
2F−1(F(u)F(g)). (1.5)

with F denoting the Fourier transform

F(u)(ξ) := (2π)−
n
2

∫
Rn
u(x)e−ix·ξ dx (1.6)

and F−1 being the inverse Fourier transform

F−1(f)(x) := (2π)−
n
2

∫
Rn
f(ξ)eix·ξ dξ (1.7)

It is important to note that the inverse Fourier transform is indeed the unique, inverse
operator of the Fourier transform in the Hilbert space L2(Rn) due to the theorem of
Plancherel. If we rearrange (1.5) to solve for u we obtain

u = (2π)−
n
2F−1

(F(f)

F(g)

)
, (1.8)

and hence, we allegedly can recover u by simple division in the Fourier domain. How-
ever, we will see that this inverse problem is ill-posed and the division will lead to heavy
amplifications of small measurement errors.

Let u denote the image that satisfies (1.4). Further, we assume that instead of the
blurry image f we observe f δ = f + nδ instead and that uδ is the solution of (1.8) with
input datum f δ. Hence, by the linearity of (1.6) and (1.7), we observe

(2π)
n
2 |u− uδ| =

∣∣∣∣F−1

(F(f − f δ)
F(g)

)∣∣∣∣ =

∣∣∣∣F−1

(F(nδ)

F(g)

)∣∣∣∣ . (1.9)

As the convolution kernel g usually has compact support, F(g) will tend to zero for high
frequencies. Hence, the denominator of (1.9) becomes fairly small, whereas the numerator
will be non-zero as the noise is of high frequency. Thus, in the limit the solution will not
depend continuously on the data and the convolution problem therefore be ill-posed.

1.1.4 Tomography

In almost any tomography application the underlying inverse problem is either the inversion
of the Radon transform2 or of the X-ray transform.

For u ∈ C∞0 (Rn), s ∈ R, and θ ∈ Sn−1 the Radon transform R : C∞0 (Rn)→ C∞(Sn−1×
R) can be defined as the integral operator

f(θ, s) = (Ru)(θ, s) =

∫
x·θ=s

u(x) dx (1.10)

=

∫
θ⊥
u(sθ + y) dy,

which, for n = 2, coincides with the X-ray transform,

f(θ, s) = (Pu)(θ, s) =

∫
R
u(sθ + tθ⊥) dt,

2Named after the Austrian mathematician Johann Karl August Radon (16 December 1887 – 25 May
1956).
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θ

s

u(x)

t

tθ⊥

Figure 1.1: Visualization of the Radon transform in two dimensions (which coincides with the
X-ray transform). The function u is integrated over the ray parametrized by θ and s.3

for θ ∈ Sn−1 and θ⊥ being the vector orthogonal to θ. Hence, the X-ray transform (and
therefore also the Radon transform in two dimensions) integrates the function u over lines
in Rn, see Fig. 1.1.

Example 1.2. Let n = 2. Then Sn−1 is simply the unit sphere S1 = {θ ∈ R2 | ‖θ‖ = 1}.
We can choose for instance θ = (cos(ϕ), sin(ϕ))>, for ϕ ∈ [0, 2π), and parametrise the
Radon transform in terms of ϕ and s, i.e.

f(ϕ, s) = (Ru)(ϕ, s) =

∫
R
u(s cos(ϕ)− t sin(ϕ), s sin(ϕ) + t cos(ϕ)) dt. (1.11)

Note that—with respect to the origin of the reference coordinate system—ϕ determines
the angle of the line along one wants to integrate, while s is the offset from that line from
the centre of the coordinate system.

X-ray Computed Tomography (CT)

In X-ray computed tomography (CT), the unknown quantity u represents a spatially vary-
ing density that is exposed to X-radiation from different angles, and that absorbs the
radiation according to its material or biological properties.

The basic modelling assumption for the intensity decay of an X-ray beam is that within
a small distance ∆t it is proportional to the intensity itself, the density, and the distance,
i.e.

I(x+ (t+ ∆t)θ)− I(x+ tθ)

∆t
= −I(x+ tθ)u(x+ tθ),

for x ∈ θ⊥. By taking the limit ∆t→ 0 we end up with the ordinary differential equation

d

dt
I(x+ tθ) = −I(x+ tθ)u(x+ tθ), (1.12)

Let R > 0 be the radius of the domain of interest centred at the origin. Then, we integrate
(1.12) from t = −

√
R2 − ‖x‖22, the position of the emitter, to t =

√
R2 − ‖x‖22, the position

3Figure adapted from Wikipedia https://commons.wikimedia.org/w/index.php?curid=3001440, by
Begemotv2718, CC BY-SA 3.0.

https://commons.wikimedia.org/w/index.php?curid=3001440
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of the detector, and obtain∫ √R2−‖x‖22

−
√
R2−‖x‖22

d
dtI(x+ tθ)

I(x+ tθ)
dt = −

∫ √R2−‖x‖22

−
√
R2−‖x‖22

u(x+ tθ) dt .

Note that, due to d/dx log(f(x)) = f ′(x)/f(x), the left hand side in the above equation
simplifies to∫ √R2−‖x‖22

−
√
R2−‖x‖22

d
dtI(x+ tθ)

I(x+ tθ)
dt = log

(
I

(
x+

√
R2 − ‖x‖22θ

))
− log

(
I

(
x−

√
R2 − ‖x‖22θ

))
.

As we know the radiation intensity at both the emitter and the detector, we therefore
know f(x, θ) := log(I(x−θ

√
R2 − ‖x‖22))− log(I(x+θ

√
R2 − ‖x‖22)) and we can write the

estimation of the unknown density u as the inverse problem of the X-ray transform (1.11)
(if we further assume that u can be continuously extended to zero outside of the circle of
radius R).

Positron Emission Tomography (PET)

In Positron Emission Tomography (PET) a so-called radioactive tracer (a positron emitting
radionuclide on a biologically active molecule) is injected into a patient (or subject). The
emitted positrons of the tracer will interact with the subjects’ electrons after travelling a
short distance (usually less than 1mm), causing the annihilation of both the positron and
the electron, which results in a pair of gamma rays moving into (approximately) opposite
directions. This pair of photons is detected by the scanner detectors, and an intensity
f(ϕ, s) can be associated with the number of annihilations detected at the detector pair
that forms the line with offset s and angle ϕ (with respect to the reference coordinate
system). Thus, we can consider the problem of recovering the unknown tracer density u
as a solution of the inverse problem (1.10) again. The line of integration is determined by
the position of the detector pairs and the geometry of the scanner.



Chapter 2

Linear inverse problems

Throughout this lecture we deal with functional analytic operators. For the sake of brevity,
we cannot recall all basic concepts of functional analysis but refer to popular textbooks
that deal with this subject, like [4, 16]. Nevertheless, we want to recall a few important
properties that will be important for this lecture.

In particular, we will focus mainly on inverse problems with bounded, linear operators
K only, i.e. K ∈ L(U ,V) with

‖K‖L(U ,V) := sup
u∈U\{0}

‖Ku‖V
‖u‖U

= sup
‖u‖U≤1

‖Ku‖V <∞.

For K : U → V we further want to denote by

(a) D(K) := U the domain

(b) N (K) := {u ∈ U | Ku = 0} the kernel

(c) R(K) := {f ∈ V | f = Ku, u ∈ U} the range

of K, see Figure 2.1
We say that K is continuous in u ∈ U if there exists a δ > 0 for all ε > 0 with

‖Ku−Kv‖V ≤ ε for all v ∈ U with ‖u− v‖U ≤ δ.

For linear K it can be shown that continuity is equivalent to the existence of a constant
C > 0 such that

‖Ku‖V ≤ C‖u‖U

for all u ∈ U . Note that this constant C actually equals the operator norm ‖K‖L(U ,V).
For the first part of the lecture we only considerK ∈ L(U ,V) with U and V being Hilbert

spaces. From functional calculus we know that every Hilbert space is equipped with a scalar
product, which we are going to denote by 〈·, ·〉U (if U denotes the corresponding Hilbert
space). In analogy to the transpose of a matrix, this scalar product structure together
with the theorem of Fréchet-Riesz [16, Section 2.10, Theorem 2.E] allows us to define the
(unique) adjoint operator of K, denoted with K∗, as follows:

〈Ku, v〉V = 〈u,K∗v〉U , for all u ∈ U , v ∈ V.

13
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U V

u

f

K

N (K)⊥

N (K)

R(K)

R(K)⊥

Figure 2.1: Visualization of the setting for linear inverse problems where we want to solve the
inverse problem (1.1). The operator K is a linear mapping between U and V. The kernel N (U)
and range R(K) are used to analyse solutions to the inverse problem.

In addition to that, a scalar product allows to have a notion of orthogonality. Two
elements u, v ∈ U are said to be orthogonal if 〈u, v〉U = 0. For a subset X ⊂ U the
orthogonal complement of X in U is defined as

X⊥ := {u ∈ U | 〈u, v〉U = 0 for all v ∈ X} .

One can show that X⊥ is a closed subspace and that U⊥ = {0}. Moreover, we have
X ⊂ (X⊥)⊥. If X is a closed subspace we even have X = (X⊥)⊥. In this case there exists
the orthogonal decomposition

U = X ⊕ X⊥,
which means that every element u ∈ U can uniquely be represented as

u = x+ x⊥ with x ∈ X and x⊥ ∈ X⊥,

see for instance [16, Section 2.9, Corollary 1].
The mapping u 7→ x defines a linear operator PX ∈ L(U ,U) that is called orthogonal

projection on X .

Lemma 2.1 (cf. [11, Section 5.16]). Let X ⊂ U be a closed subspace. The orthogonal
projection onto X satisfies the following conditions:

(a) PX is self-adjoint, i.e. P ∗X = PX ,

(b) ‖PX ‖L(U ,U) = 1 (if X 6= {0}),

(c) I − PX = PX⊥ ,

(d) ‖u− PXu‖U ≤ ‖u− v‖U for all v ∈ X ,

(e) x = PXu if and only if x ∈ X and u− x ∈ X⊥.

Remark 2.1. Note that for a non-closed subspace X we only have (X⊥)⊥ = X . For
K ∈ L(U ,V) we therefore have

• R(K)⊥ = N (K∗) and thus N (K∗)⊥ = R(K),

• R(K∗)⊥ = N (K) and thus N (K)⊥ = R(K∗).

Hence, we can conclude the orthogonal decompositions

U = N (K)⊕R(K∗) and V = N (K∗)⊕R(K).
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In the following we want to investigate the concept of generalised inverses of bounded,
linear operators, before we will identify compactness of operators as the major source of ill-
posedness. Subsequently, we are going to discuss this in more detail by analysing compact
operators in terms of their singular value decomposition.

2.1 Generalised solutions

In order to overcome the issues of non-existence or non-uniqueness of (1.1) we want to
generalise the concept of least squares solutions to linear operators in Hilbert spaces.

If we consider the generic inverse problem (1.1) again, we know that there does not
exist a solution of the inverse problem if f /∈ R(K). In that case it seems reasonable to find
an element u ∈ U for which ‖Ku− f‖V gets minimal instead. If V = L2 then u minimizes
the squared error and thus motivates the name least squares solution.

However, for N (K) 6= {0} there are infinitely many solutions that minimise ‖Ku−f‖V
of which we have to pick one. Picking the one with minimal norm ‖u‖U brings us to the
definition of the minimal norm solution.

Definition 2.1. We call u ∈ U a least squares solution of the inverse problem (1.1), if

‖Ku− f‖V ≤ ‖Kv − f‖V for all v ∈ U . (2.1)

Furthermore, we call u† ∈ U a minimal norm solution of the inverse problem (1.1), if

‖u†‖U ≤ ‖v‖U for all least squares solutions v. (2.2)

Remark 2.2. Let u be a least squares solution to Ku = f . It is easy to see that each
v ∈ {u}+N (K) is a least squares solution as well.

Moreover, let u† be a minimal norm solution, then u† ∈ N (K)⊥. Assume to the
contrary that this was not the case. Then, as N (K) is closed for K ∈ L(U ,V), there exists
elements x⊥ ∈ N (K)⊥ and x ∈ N (K) with ‖x‖U > 0 such that u† = x+ x⊥. Clearly, x⊥

is a least squares solution and by

‖u†‖2U = ‖x+ x⊥‖2U = ‖x⊥‖2U + 2 〈x⊥, x〉U︸ ︷︷ ︸
=0

+‖x‖2U > ‖x⊥‖2U

has smaller norm than u†, which contradicts that u† is of minimal norm, thus u† ∈ N (K)⊥.

In numerical linear algebra it is a well known fact that the normal equations can
be considered to compute least squares solutions. The same holds true in the infinite-
dimensional case.

Theorem 2.1. Let f ∈ V and K ∈ L(U ,V). Then, the following three assertions are
equivalent.

(a) u ∈ U satisfies Ku = PR(K)
f .

(b) u is a least squares solution of the inverse problem (1.1).

(c) u solves the normal equation
K∗Ku = K∗f. (2.3)
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Remark 2.3. The name normal equation is derived from the fact that for any solution u
its residual Ku− f is orthogonal (normal) to R(K). This can be readily seen, as we have
for any v ∈ U that

0 = 〈v,K∗(Ku− f)〉U = 〈Kv,Ku− f〉V

which shows Ku− f ∈ R(K)⊥.

Proof of Theorem 2.1. For (a)⇒ (b): Let u ∈ U such that Ku = PR(K)
f and let v ∈ U be

arbitrary. With the basic properties of the orthogonal projection, Lemma 2.1 (d), we have

‖Ku− f‖2V = ‖(I − PR(K)
)f‖2V ≤ inf

g∈R(K)
‖g − f‖2V ≤ inf

v∈U
‖Kv − f‖2V ,

which shows that u is a least squares solution. Here, the last inequality follows from
R(K) ⊂ R(K).

For (b)⇒ (c): Let u ∈ U be a least squares solution and let v ∈ U an arbitrary element.
We define the quadratic polynomial F : R→ R,

F (λ) := ‖K(u+ λv)− f‖2V = λ2‖Kv‖2V − 2λ〈Kv, f −Ku〉V + ‖f −Ku‖2V .

A necessary condition for u ∈ U to be a least squares solution is F ′(0) = 0, which leads to
〈v,K∗(f −Ku)〉U = 0. As v was arbitrary, it follows that the normal equation (2.3) must
hold.

For (c) ⇒ (a): From the normal equation it follows that K∗(f − Ku) = 0, which

is equivalent to f − Ku ∈ R(K)⊥, see Remark 2.3. Since R(K)⊥ =
(
R(K)

)⊥
and

Ku ∈ R(K) ⊂ R(K), the assertion follows from Lemma 2.1 (e):

Ku = PR(K)
f ⇔ Ku ∈ R(K) and f −Ku ∈

(
R(K)

)⊥
.

Lemma 2.2. Let f ∈ V and let L be the set of least squares solutions to the inverse problem
(1.1). Then, L is non-empty if and only if f ∈ R(K)⊕R(K)⊥.

Proof. Let u ∈ L. It is easy to see that f = Ku + (f − Ku) ∈ R(K) ⊕ R(K)⊥ as the
normal equations are equivalent to f −Ku ∈ R(K)⊥.

Consider now f ∈ R(K) ⊕ R(K)⊥. Then there exists u ∈ U and g ∈ R(K)⊥ =(
R(K)

)⊥
such that f = Ku + g and thus PR(K)

f = PR(K)
Ku + PR(K)

g = Ku and the
assertion follows from Theorem 2.1 (a).

Remark 2.4. If the dimensions of U andR(K) are finite, thenR(K) is closed, i.e. R(K) =
R(K). Thus, in a finite dimensional setting, there always exists a least squares solution.

It is natural to ask whether there are always least squares solutions. From the above
remark it is clear that we have to look for an example in infinite dimensional spaces. The
answer is negative as we see from the following counter example.

Example 2.1. Let U = `2,V = `2, where the space `2 is the space of all square summable
sequences, i.e.

`2 :=

{
{xj}j∈N

∣∣∣∣ xj ∈ R,
∞∑
j=1

x2
j <∞

}
.
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It is a Hilbert space with inner product and norm given by

〈x, y〉`2 :=
∞∑
j=1

xjyj and ‖x‖`2 :=

 ∞∑
j=1

x2
j

1/2

, respectively.

For more information see, for instance, [4].
Consider the inverse problem Kx = f , where the linear operator K : `2 → `2 is defined

by
(Kx)j :=

xj
j
.

and the data by fj := j−1. It is easy to see that K is linear and bounded, i.e. K ∈ L(`2, `2)
and f ∈ `2.

We will show that f ∈ R(K) \ R(K) and thus f 6∈ R(K)⊕R(K)⊥. With Lemma 2.2
it follows then that there are no least squares solutions.

First we show that f 6∈ R(K) by contradiction. Assume that f ∈ R(K), then there
exists x ∈ `2 such that Kx = f and thus j−1xj = j−1 for all j ∈ N. Therefore, we have
xj = 1 and x 6∈ `2.

Next we show that f ∈ R(K). Let {xk}k∈N ⊂ `2 be a sequence in `2 (each element is
a sequence as well), with

(xk)j :=

{
1, j ≤ k
0, j > k

.

It is easy to see that xk ∈ `2 as it has only finitely many non-negative components. In
addition, we have

fk := Kxk, (fk)j =

{
1
j , j ≤ k
0, j > k

and therefore

‖f − fk‖2`2 =
∞∑

j=k+1

f2
j =

∞∑
j=1

f2
j −

k∑
j=1

f2
j → 0 as k →∞

by definition of a convergent series. Therefore, fk → f in `2 and thus f ∈ R(K).

Theorem 2.2. Let f ∈ R(K)⊕R(K)⊥. Then there exists a unique minimal norm solution
u† to the inverse problem (1.1) and all least squares solutions are given by {u†}+N (K).

Proof. From Lemma 2.2 we know that there exist least squares solutions and denote any
arbitrary two of them (not necessarily different) by u, v ∈ U . Then there exist ϕ,ψ ∈
N (K)⊥ and x, y ∈ N (K) such that u = ϕ+ x and v = ψ + y. As we noted in Remark 2.2
ϕ and ψ are least squares solutions as well. With Theorem 2.1 we conclude

K(ϕ− ψ) = Kϕ−Kψ = PR(K)
f − PR(K)

f = 0, (2.4)

which shows that ϕ− ψ ∈ N (K). But as ϕ− ψ ∈ N (K)⊥ and N (K) ∩ N (K)⊥ = {0} we
see that ϕ = ψ. Therefore all least squares solutions are of the form {ϕ}+N (K).

Moreover, we know that u† is a least squares solution and that u† ∈ N (K)⊥, see
Remark 2.2. Thus we have that u† = ϕ, which completes the proof.

Corollary 2.1. The minimal norm solution is the unique solution of the normal equation
in N (K)⊥.
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2.2 Generalised inverse

We have seen that, for arbitrary f ∈ V, a least squares solution does not need to exist if
R(K) is not closed. If, however, a least squares solution exists, then we have shown that
the minimum norm solution is unique. We will see in the following that the minimum norm
solution can be computed via the Moore-Penrose generalised inverse.

Definition 2.2. Let K ∈ L(U ,V) and let

K̃ := K|N (K)⊥ : N (K)⊥ → R(K)

denote the restriction of K to N (K)⊥. The Moore-Penrose inverse K† is defined as the
unique linear extension of K̃−1 to

D(K†) = R(K)⊕R(K)⊥

with
N (K†) = R(K)⊥.

Remark 2.5. Due to the restriction to N (K)⊥ and R(K) we have that K̃ is injective and
surjective. Hence, K̃−1 is linear and exists and—as a consequence—K† is well-defined on
R(K) and linear.

Moreover, due to the orthogonal decomposition D(K†) = R(K)⊕R(K)⊥, there exists
for arbitrary f ∈ D(K†) elements f1 ∈ R(K) and f2 ∈ R(K)⊥ with f = f1 +f2. Therefore,
we have

K†f = K†f1 +K†f2 = K†f1 = K̃−1f1 = K̃−1PR(K)
f , (2.5)

where we used that f2 ∈ R(K)⊥ = N (K†). Thus, K† is well-defined on the entire domain
D(K†).

Note that, if K is bijective we have that K† = K−1. Moreover, we highlight that the
extension K† is not necessarily continuous.

Example 2.2. To illustrate the definition of the Moore-Penrose inverse we consider a
simple example in finite dimensions. Let the linear operator K : R3 → R2 be given by

Kx =

(
2 0 0
0 0 0

)x1

x2

x3

 =

(
2x1

0

)
.

It is easy to see that R(K) = {f ∈ R2 | f2 = 0} and N (K) = {x ∈ R3 | x1 = 0}. Thus,
N (K)⊥ = {x ∈ R3 | x2, x3 = 0}. Therefore, K̃ : N (K)⊥ → R(K), given by x 7→ (2x1, 0)>,
is bijective and its inverse K̃−1 : R(K)→ N (K)⊥ is given by f 7→ (f1/2, 0, 0)>.

As the orthogonal projection onto R(K) is given by f = (f1, f2) 7→ (f1, 0), the Moore-
Penrose inverse of K is K† : R2 → R3,

K†f =

1/2 0
0 0
0 0

(f1

f2

)
=

f1/2
0
0

 .

Let us consider data f̃ = (8, 1)> 6∈ R(K). Then, K†f̃ = K†(8, 1)> = (4, 0, 0)>.

It can be shown that K† can be characterized by the Moore-Penrose equations.
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Lemma 2.3. The Moore-Penrose inverse K† satisfies R(K†) = N (K)⊥ and the Moore-
Penrose equations

(a) KK†K = K,

(b) K†KK† = K†,

(c) K†K = I − PN (K),

(d) KK† = PR(K)

∣∣∣
D(K†)

,

where PN (K) and PR(K)
denote the orthogonal projections on N (K) andR(K), respectively.

Proof. First we prove that R(K†) = N (K)⊥. Let u ∈ R(K†). Then, there exists a
f ∈ D(K†) with u = K†f and according to (2.5) we observe that u = K†f = K̃−1PR(K)

f .
Hence, u ∈ R(K̃−1) = N (K)⊥ and therefore R(K†) ⊆ N (K)⊥. To prove N (K)⊥ ⊆
R(K†), let u ∈ N (K)⊥ and it holds u = K̃−1K̃u = K†Ku. Thus, u ∈ R(K†) showing set
equality.

It remains to prove the Moore-Penrose equations:
(d): For f ∈ D(K†) it follows from (2.5) and K = K̃ on N (K)⊥ that

KK†f = KK̃−1PR(K)
f = K̃K̃−1PR(K)

f = PR(K)
f.

(c): According to the definition of K† we have K†Ku = K̃−1Ku for all u ∈ U and thus

K†Ku = K̃−1KPN (K)u︸ ︷︷ ︸
=0

+K̃−1K (I − PN (K))︸ ︷︷ ︸
=PN (K)⊥

u = (I − PN (K))u,

where we have used Lemma 2.1 (c) and the fact that N (K) is closed.
(b): Inserting (d) into (2.5) yields

K†f = K†PR(K)
f = K†KK†f.

(a): With (c) we have

KK†K = K(I − PN (K)) = K −KPN (K) = K.

The following theorem states that minimum norm solutions can be computed via the
generalised inverse.

Theorem 2.3. For each f ∈ D(K†), the minimal norm solution u† to the inverse problem
(1.1) is given via

u† = K†f.

Proof. As f ∈ D(K†), we know from Theorem 2.2 that the minimal norm solution u† exists
and is unique. With u† ∈ N (K)⊥, Lemma 2.3, and Theorem 2.1 we conclude that

u† = (I − PN (K))u
† = K†Ku† = K†PR(K)

f = K†KK†f = K†f.
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As a consequence of Theorem 2.3 and Theorem 2.1, we find that the minimum norm
solution u† of Ku = f is a minimum norm solution of the normal equation (2.3), i.e.

u† = (K∗K)†K∗f.

Thus, in order to compute u† we can equivalently consider finding the minimum norm
solution of the normal equation.

At the end of this section we further want to analyse the domain of the generalised
inverse in more detail. Due to the construction of the Moore-Penrose inverse we have
D(K†) = R(K)⊕R(K)⊥. As orthogonal complements are always closed we can conclude

D(K†) = R(K)⊕R(K)⊥ = V,
and hence, D(K†) is dense in V. Thus, if R(K) is closed it follows that D(K†) = V and
on the other hand, D(K†) = V implies R(K) is closed.

Moreover, for f ∈ R(K)⊥ = N (K†) the minimum norm solution is u† = 0. Therefore,
for given f ∈ R(K), the important question to address is when f also satisfies f ∈ R(K).
If this is the case, K† has to be continuous. However, the existence of a single element
f ∈ R(K) \ R(K) is enough already to prove that K† is discontinuous.

Definition 2.3. Let V and U be Hilbert spaces and consider A : V → U . We call the graph
of A,

gr(A) := {(f, u) ∈ V × U | Af = u},
closed if for any sequence {(fj , uj)}j∈N with uj = Afj, fj → f ∈ V, and uj → u ∈ U we
have that Af = u.

Theorem 2.4 (Closed graph theorem [14, Proposition 2.14 and Theorem 2.15]). Let V
and U be Hilbert spaces and let A : V → U be a linear mapping with a closed graph. Then
A ∈ L(V,U).

Theorem 2.5. Let K ∈ L(U ,V). Then K† is continuous, i.e. K† ∈ L(D(K†),U), if and
only if R(K) is closed.

Proof. We will show first that the graph of the Moore-Penrose inverse is closed. To this end,
let {(fj , uj)}j∈N ⊂ gr(K†) be a sequence in the graph of the Moore-Penrose inverse, i.e.
uj = K†fj , and fj → f and uj → u. Then, because of the continuity of K, Lemma 2.3 (d),
and the continuity of the orthogonal projection, we have

Ku = lim
j→∞

Kuj = lim
j→∞

KK†fj = lim
j→∞

PR(K)
fj = PR(K)

f.

Thus, by Theorem 2.1, u is a least squares solution. As K†fj ∈ N (K)⊥ and N (K)⊥

is closed, we have u ∈ N (K)⊥ and it follows from the uniqueness of the minimal norm
solution that u = K†f . This shows that the graph of K† is closed.

For the proof of the theorem, assume first that R(K) is closed so that D(K†) = V.
Then, by the closed graph theorem (Theorem 2.4), K† is bounded and therefore continuous.

Conversely, let K† be continuous. As D(K†) is dense in V, there is a unique continuous
extension A of K† to V,

Af := lim
j→∞

K†fj for {fj}j∈N ⊂ D(K†) with fj → f ∈ V.

Now let f ∈ R(K) and let {fj}j∈N ⊂ D(K†) with fj → f . Then, from Lemma 2.3 (d) we
find that

f = PR(K)
f = lim

j→∞
PR(K)

fj = lim
j→∞

KK†fj = KAf ∈ R(K)

and thus R(K) = R(K) showing that R(K) is closed.
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In the next section we are going to discover that the class of compact operators is a
class for which the Moore-Penrose inverses are discontinuous.

2.3 Compact operators

Compact operators are very common in inverse problems. In fact, almost all (linear) inverse
problems involve the inversion of compact operators. Compact operators are defined as
follows.

Definition 2.4. Let K ∈ L(U ,V). Then K is said to be compact if the image of a bounded
sequence {uj}j∈N ⊂ U contains a convergent subsequence {Kujk}k∈N ⊂ V. We denote the
space of compact operators by K(U ,V).

Remark 2.6. We can equivalently define an operator K to be compact if and only if for
any bounded set B, the closure of its image K(B) is compact.

Example 2.3 (Follows from e.g. [17, p. 49]). Let I : U → U be the identity operator on
U , i.e. u 7→ u. Then I is compact if and only if the dimension of U is finite.

Example 2.4 (e.g. [17, p. 286, Proposition 5] or [4, p. 186]). Let K ∈ L(U ,V). If the
range of K is finite dimensional, then K is compact.

Example 2.5 ([10, p. 230]). The operator K : `2 → `2, (Kx)j = j−1xj from Example 2.1
is compact.

Example 2.6 ([10, p. 231]). Let ∅ 6= Ω ⊂ Rn be compact. Let k ∈ L2(Ω× Ω) and define
the integral operator K : L2(Ω)→ L2(Ω) with

(Ku)(x) =

∫
Ω
k(x, y)u(y) dy .

Then, K is compact.

Example 2.7 ([12, p. 38]). Let B := {x ∈ R2 | ‖x‖ ≤ 1} denote the unit ball in R2 and
Z := [−1, 1]× [0, π). Moreover, let θ(ϕ) := (cos(ϕ), sin(ϕ))>, θ⊥(ϕ) := (sin(ϕ),− cos(ϕ))>

be the unit vectors pointing in the direction described by ϕ and orthogonal to it. Then,
the Radon transform/X-ray transform is defined as the operator R : L2(B)→ L2(Z) with

(Ru)(s, ϕ) :=

∫ √1−s2

−
√

1−s2
u
(
sθ(ϕ) + tθ⊥(ϕ)

)
dt.

It can be shown that the Radon transform is linear and continuous, i.e. R ∈ L(L2(B), L2(Z)),
and even compact, i.e. R ∈ K(L2(B), L2(Z)).

Compact operators can be seen as the infinite dimensional analogue to ill-conditioned
matrices. Indeed it can be seen that compactness is a main source of ill-posedness in infinite
dimensions, confirmed by the following result.

Theorem 2.6. Let K ∈ K(U ,V) with an infinite dimensional range. Then, the Moore-
Penrose inverse of K is discontinuous.
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Proof. As the range R(K) is of infinite dimension, we can conclude that U and N (K)⊥

are also infinite dimensional. We can therefore find a sequence {uj}j∈N with uj ∈ N (K)⊥,
‖uj‖U = 1 and 〈uj , uk〉U = 0 for j 6= k. Since K is a compact operator the sequence
fj = Kuj has a convergent subsequence, hence, for all δ > 0 we can find j, k such that
‖fj − fk‖V < δ. However, we also obtain

‖K†fj −K†fk‖2U = ‖K†Kuj −K†Kuk‖2U
= ‖uj − uk‖2U = ‖uj‖2U − 2〈uj , uk〉U + ‖uk‖2U = 2,

which shows thatK† is discontinuous. Here, the second identity follows from Lemma 2.3 (c)
and the fact that uj , uk ∈ N (K)⊥.

To have a better understanding of when we have f ∈ R(K) \ R(K) for compact
operators K, we want to consider the singular value decomposition of compact operators.

2.4 Singular value decomposition of compact operators

We want to characterise the Moore-Penrose inverse of compact operators in terms of a
spectral decomposition. Like in the finite dimensional case of matrices, we can only expect
a spectral decomposition to exist for self-adjoint operators.

Theorem 2.7 ([10, p. 225, Theorem 9.16]). Let U be a Hilbert space and K ∈ K(U ,U) be
self-adjoint. Then there exists an orthonormal basis {uj}j∈N ⊂ U of R(K) and a sequence
of eigenvalues {λj}j∈N ⊂ R with |λ1| ≥ |λ2| ≥ . . . > 0 such that for all u ∈ U we have

Ku =

∞∑
j=1

λj〈u, uj〉Uuj .

The sequence {λj}j∈N is either finite or we have λj → 0.

Remark 2.7. The notation in the theorem above only makes sense if the sequence {λj}j∈N
is infinite. For the case that there are only finitely many λj the sum has to be interpreted
as a finite sum.

Moreover, as the eigenvalues are sorted by absolute value |λj |, we have ‖K‖L(U ,U) =
|λ1|.

Due to Theorem 2.1 we can consider K∗K instead of K, which brings us to the singular
value decomposition of linear, compact operators.

Theorem 2.8. Let K ∈ K(U ,V). Then there exists

(a) a not-necessarily infinite null sequence {σj}j∈N with σ1 ≥ σ2 ≥ . . . > 0,

(b) an orthonormal basis {uj}j∈N ⊂ U of N (K)⊥,

(c) an orthonormal basis {vj}j∈N ⊂ V of R(K) with

Kuj = σjvj , K∗vj = σjuj , for all j ∈ N. (2.6)

Moreover, for all w ∈ U we have the representation

Kw =
∞∑
j=1

σj〈w, uj〉U vj . (2.7)

The sequence {(σj , uj , vj)} is called singular system or singular value decomposition
(SVD) of K.
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Proof. As K is compact we have that K∗K : U → U is compact and self-adjoint. By Theo-
rem 2.7 there exists a decreasing (in terms of absolute values) null sequence {λj}j∈N ⊂ R \
{0} and an orthonormal basis {uj}j∈N ⊂ U of R(K∗K) with K∗Ku =

∑∞
j=1 λj〈u, uj〉Uuj

for all u ∈ U .
Due to

λj = λj‖uj‖2U = 〈λjuj , uj〉U = 〈K∗Kuj , uj〉U = 〈Kuj ,Kuj〉V = ‖Kuj‖2V > 0

we can define
σj :=

√
λj and vj := σ−1

j Kuj ∈ V for all j ∈ N.

Further, we observe

K∗vj = σ−1
j K∗Kuj = σ−1

j λjuj = σjuj ,

which proves Equation (2.6).
We also obverse that {vj}j∈N form an orthonormal basis due to

〈vi, vj〉V =
1

σiσj
〈Kui,Kuj〉V =

1

σiσj
〈K∗Kui, uj〉U =

λi
σiσj
〈ui, uj〉U =

{
1 if i = j,

0 else.

We know that {uj}j∈N is an orthonormal basis of R(K∗K) and we want to show that
it is also an orthonormal basis of N (K)⊥. As made apparent in Remark 2.1, we have
R(K∗) = N (K)⊥ and thus it is sufficient to show that R(K∗K) = R(K∗).

It is clear that R(K∗K) = R(K∗|R(K)) ⊆ R(K∗), such that we are left to prove that
R(K∗) ⊆ R(K∗K).

Let u ∈ R(K∗) and let ε > 0. Then, there exists f ∈ N (K∗)⊥ with ‖K∗f −u‖U < ε/2.
As N (K∗)⊥ = R(K) (again see Remark 2.1), there exists x ∈ U such that ‖Kx − f‖V <
ε/(2‖K‖L(U ,V)). Putting these together we have

‖K∗Kx− u‖U ≤ ‖K∗Kx−K∗f‖U + ‖K∗f − u‖U
≤ ‖K∗‖L(U ,V)‖Kx− f‖V︸ ︷︷ ︸

<ε/2

+ ‖K∗f − u‖U︸ ︷︷ ︸
<ε/2

< ε

which shows that u ∈ R(K∗K) and thus also R(K∗) ⊆ R(K∗K).
To show (2.7), observe that we have an orthonormal basis {uj}j∈N of R(K∗), which we

can extend to an orthonormal basis V of U . Since U = N (K) ⊕ N (K)⊥ and N (K)⊥ =
R(K∗) we need to consider elements from N (K) for the extension.

Then,

Ku =
∑
v∈V
〈u, v〉UKv =

∑
j∈N
〈u, uj〉UKuj =

∑
j∈N
〈u, uj〉Uσjvj

=
∑
j∈N
〈u,K∗vj〉Uvj =

∑
j∈N
〈Ku, vj〉Vvj

The first line shows (2.7) and the second line shows that {vj}j∈N is an orthonormal basis
of R(K).
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Remark 2.8. Since Eigenvalues ofK∗K with Eigenvectors uj are also Eigenvalues ofKK∗

with Eigenvectors vj , we further obtain a singular value decomposition of K∗, i.e.

K∗z =
∞∑
j=1

σj〈z, vj〉V uj .

A singular system allows us to characterize elements in the range of the operator.

Theorem 2.9. Let K ∈ K(U ,V) with singular system {(σj , uj , vj)}j∈N, and f ∈ R(K).
Then f ∈ R(K) if and only if the Picard criterion

∞∑
j=1

|〈f, vj〉V |2
σ2
j

<∞ (2.8)

is met.

Proof. Let f ∈ R(K), thus there is a u ∈ U such that Ku = f . It is easy to see that we
have

〈f, vj〉V = 〈Ku, vj〉V = 〈u,K∗vj〉U = σj〈u, uj〉U

and therefore

∞∑
j=1

σ−2
j |〈f, vj〉V |2 =

∞∑
j=1

|〈u, uj〉U |2 ≤ ‖u‖2U <∞ .

Now let the Picard criterion (2.8) hold and define u :=
∑∞

j=1 σ
−1
j 〈f, vj〉Vuj ∈ U . It is

well-defined by the Picard criterion (2.8) and we conclude

Ku =

∞∑
j=1

σ−1
j 〈f, vj〉VKuj =

∞∑
j=1

〈f, vj〉Vvj = PR(K)
f = f ,

which shows f ∈ R(K).

Remark 2.9. The Picard criterion is a condition on the decay of the coefficents 〈f, vj〉V .
As the singular values σj decay to zero as j → ∞, the Picard criterion is only met if the
coefficients 〈f, vj〉V decay sufficiently fast.

In case the singular system is given by the Fourier basis, then the coefficents 〈f, vj〉V
are just the Fourier coefficents of f . Therefore, the Picard criterion is a condition on the
decay of the Fourier coefficients which is equivalent to the smoothness of f .

We can now derive a representation of the Moore-Penrose inverse in terms of the singular
value decomposition.

Theorem 2.10. Let K ∈ K(U ,V) with singular system {(σj , vj , uj)}j∈N and f ∈ D(K†).
Then the Moore-Penrose inverse of K can be written as

K†f =

∞∑
j=1

σ−1
j 〈f, vj〉Vuj . (2.9)
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Proof. As f ∈ R(K) ⊕ R(K)⊥ there exist u ∈ N (K)⊥ and g ∈ R(K)⊥ such that f =
Ku+ g. As {uj}j∈N is an orthonormal basis of N (K)⊥ we have that

u =
∞∑
j=1

〈u, uj〉Uuj =
∞∑
j=1

σ−1
j 〈u, σjuj〉Uuj =

∞∑
j=1

σ−1
j 〈u,K∗vj〉Uuj

=

∞∑
j=1

σ−1
j 〈Ku, vj〉Vuj =

∞∑
j=1

σ−1
j 〈f − g, vj〉Vuj =

∞∑
j=1

σ−1
j 〈f, vj〉Vuj

where we used for the last equality that g ∈ R(K)⊥ and vj ∈ R(K).
Moreover, in addition to u ∈ N (K)⊥ we have that u satisfies the normal equation

K∗Ku =
∞∑
j=1

σ2
jσ
−1
j 〈f, vj〉Vuj =

∞∑
j=1

σj〈f, vj〉Vuj = K∗f

and is therefore the minimal norm solution to the inverse problem Ku = f (1.1). With
Theorem 2.3 we conclude that u = K†f .

From representation (2.9) we can see what happens in case of noisy measurements.
Assume we are given f δ = f + δvj and denote by u† and u†δ the minimal norm solutions of
Ku = f and Ku = f δ. Then we observe

‖u† − u†δ‖U = ‖K†f −K†f δ‖U = δ‖K†vj‖U =
δ

σj
→∞ for j →∞ .

For fixed j we see that the amplification of the error δ depends on how small σj is. Hence,
the faster the singular values decay, the stronger the amplification of errors. For that
reason, one distinguishes between two classes of ill-posed problems:

Definition 2.5. We say that an ill-posed inverse problem (1.1) is severely ill-posed if the
singular values decay as σj = O(exp(−j)), where the “Big-O-notation” means that there
exists j0 and c > 0 such that for all j ≥ j0 there is σj ≤ c exp(−j). We call the ill-posed
inverse problem mildly ill-posed if it is not severely ill-posed.

Example 2.8. Let us consider the example of differentiation again, as introduced in Sec-
tion 1.1.2. The operator K : L2([0, 1])→ L2([0, 1]) of the inverse problem (1.1) of differen-
tiation is given as

(Ku)(y) =

∫ y

0
u(x) dx =

∫ 1

0
k(x, y)u(x) dx ,

with k : [0, 1]× [0, 1]→ R defined as

k(x, y) :=

{
1 x ≤ y
0 else

.

This is a special case of the integral operators as introduced in Example 2.6 due to its
kernel k being square integrable and thus K is compact.

In order to compute the singular value decomposition of K we compute its adjoint K∗

first, which is characterised via

〈Ku, v〉L2([0,1]) = 〈u,K∗v〉L2([0,1]) .
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Hence, we obtain

〈Ku, v〉L2([0,1]) =

∫ 1

0

∫ 1

0
k(x, y)u(x) dx v(y) dy =

∫ 1

0
u(x)

∫ 1

0
k(x, y)v(y) dy dx .

Hence, the adjoint operator K∗ is given via

(K∗v)(x) =

∫ 1

0
k(x, y)v(y) dy =

∫ 1

x
v(y) dy . (2.10)

Now we want to compute the Eigenvalues and Eigenvectors of K∗K, i.e. we look for λ > 0
and u ∈ L2([0, 1]) with

λu(x) = (K∗Ku)(x) =

∫ 1

x

∫ y

0
u(z) dz dy .

We immediately observe u(1) = 0 and further

λu′(x) =
d

dx

∫ 1

x

∫ y

0
u(z) dz dy = −

∫ x

0
u(z) dz ,

from which we conclude u′(0) = 0. Taking the derivative another time thus yields the
ordinary differential equation

λu′′(x) + u(x) = 0 ,

for which solutions are of the form

u(x) = c1 sin(σ−1x) + c2 cos(σ−1x) ,

with σ :=
√
λ and constants c1, c2. In order to satisfy the boundary conditions u(1) =

c1 sin(σ−1) + c2 cos(σ−1) = 0 and u′(0) = c1 = 0, we chose c1 = 0 and σ such that
cos(σ−1) = 0. Hence, we have

σj =
2

(2j − 1)π
for j ∈ N ,

and by choosing c2 =
√

2 we obtain the following normalised representation of uj :

uj(x) =
√

2 cos

((
j − 1

2

)
πx

)
.

According to (2.6) we further obtain

vj(x) = σ−1
j (Kuj)(x) =

(
j − 1

2

)
π

∫ x

0

√
2 cos

((
j − 1

2

)
πy

)
dy =

√
2 sin

((
j − 1

2

)
πx

)
,

and hence, for f ∈ L2([0, 1]) the Picard criterion becomes

2

∞∑
j=1

σ−2
j

(∫ 1

0
f(x) sin

(
σ−1
j x

)
dx

)2

<∞ .

Thus, the Picard criterion holds if f is differentiable and f ′ ∈ L2([0, 1]).
From the decay of the singular values we see that this inverse problem is mildly ill-posed.



Chapter 3

Regularisation

We have seen in the previous section that the major source of ill-posedness of inverse
problems of the type (1.1) is a fast decay of the singular values of K. An idea to overcome
this issue is to define approximations of K† in the following fashion. Consider the family
of operators

Rαf :=

∞∑
j=1

gα(σj)〈f, vj〉V uj , (3.1)

with functions gα : R>0 → R≥0 that converge to 1/σj as α converges to zero. We are going
to see that such an operator Rα is what is called a regularisation (of K†), if gα is bounded,
i.e.

gα(σ) ≤ Cα for all σ ∈ R>0. (3.2)

In case (3.2) holds true, we immediately observe

‖Rαf‖2U =
∞∑
j=1

gα(σj)
2|〈f, vj〉V |2 ≤ C2

α

∞∑
j=1

|〈f, vj〉V |2 ≤ C2
α‖f‖2V ,

which means that Cα is a bound for the norm of Rα and thus Rα ∈ L(V,U).

Example 3.1 (Truncated singular value decomposition). As a first example for a spectral
regularisation of the form (3.1) we want to consider the so-called truncated singular value
decomposition. As the name suggests, the idea is to discard all singular values below a
certain threshold α

gα(σ) =

{
1
σ σ ≥ α
0 σ < α

. (3.3)

Note that for all σ > 0 we naturally obtain limα→0 gα(σ) = 1/σ. Equation (3.1) then reads
as

Rαf =
∑
σj≥α

1

σj
〈f, vj〉V uj , (3.4)

for all f ∈ V. Note that (3.4) is always well-defined (i.e. finite) for α > 0 as zero is the only
accumulation point of singular vectors of compact operators. From (3.3) we immediately
observe gα(σ) ≤ 1/α so that ‖Rα‖L(U ,V) ≤ 1/α.

27
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U V

δu† f
f δ

K†f δ

Rαf
δ

K

Figure 3.1: Visualization of reconstruction from noisy data. While the Moore–Penrose inverse re-
constructs optimally from noiseless data, its noise amplification renders it useless when small errors
are present in the data. A regularisation operator gives a robust solution while still approximating
the Moore–Penrose inverse.

Example 3.2 (Tikhonov regularisation). The main idea behind Tikhonov regularisation1

is to shift the singular values of K∗K by a constant factor, which will be associated with
the regularisation parameter α. This shift can be realised via the function

gα(σ) =
σ

σ2 + α
. (3.5)

Again, we immediately observe that for all σ > 0 we have limα→0 gα(σ) = 1/σ. Further,
we can estimate gα(σ) ≤ 1/(2

√
α) due to σ2 + α ≥ 2

√
ασ. The corresponding Tikhonov

regularisation (3.1) reads as

Rαf =
∞∑
j=1

σj
σ2
j + α

〈f, vj〉V uj . (3.6)

After getting an intuition about regularisation of the form (3.1) via examples, we want
to define what a regularisation actually is, and what properties come along with it.

Definition 3.1. Let K ∈ L(U ,V) be a bounded operator. A family {Rα}α>0 of continuous
operators is called regularisation (or regularisation operator) of K† if

Rαf → K†f = u†

for all f ∈ D(K†) as α→ 0.

Definition 3.2. We further call {Rα}α>0 a linear regularisation, if Definition 3.1 is sat-
isfied together with the additional assumption

Rα ∈ L(V,U) ,

for all α ∈ R>0.

Hence, a regularisation is a pointwise approximation of the Moore–Penrose inverse
with continuous operators, see Figure 3.1 for an illustration. As in the interesting cases
the Moore–Penrose inverse may not be continuous we cannot expect that the norms of a
regularisation stay bounded as α→ 0. This is confirmed by the following results.

1Named after the Russian mathematician Andrey Nikolayevich Tikhonov (30 October 1906 - 7 October
1993)
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Theorem 3.1 (Banach–Steinhaus e.g. [4, p. 78], [17, p. 173]). Let U ,V be Hilbert spaces
and {Kj}j∈N ⊂ L(U ,V) a family of point-wise bounded operators, i.e. for all u ∈ U there
exists a constant C(u) > 0 with supj∈N ‖Kju‖V ≤ C(u). Then

sup
j∈N
‖Kj‖L(U ,V) <∞ .

Corollary 3.1 ([17, p. 174]). Let U ,V be Hilbert spaces and {Kj}j∈N ⊂ L(U ,V). Then
the following two conditions are equivalent:

(a) There exists K ∈ L(U ,V) such that

Ku = lim
j→∞

Kju for all u ∈ U .

(b) There is a dense subset X ⊂ U such that limj→∞Kju exists for all u ∈ X and

sup
j∈N
‖Kj‖L(U ,V) <∞ .

Theorem 3.2. Let U , V be Hilbert spaces, K ∈ L(U ,V) and {Rα}α>0 a linear regularisa-
tion as defined in Definition 3.2. If K† is not continuous, {Rα}α>0 cannot be uniformly
bounded. In particular this implies the existence of an element f ∈ V with ‖Rαf‖U → ∞
for α→ 0.

Proof. We prove the theorem by contradiction and assume that {Rα}α>0 is uniformly
bounded. Hence, there exists a constant C with ‖Rα‖L(V,U) ≤ C for all α > 0. Due to
Definition 3.1, we have Rα → K† on D(K†). Corollary 3.1 then already implies K† ∈
L(V,U), which is a contradiction to the assumption that K† is not continuous.

It remains to show the existence of the element f ∈ V with ‖Rαf‖U → ∞ for α → 0.
If such an element would not exist, we could conclude {Rα}α>0 ⊂ L(V,U). However,
Theorem 3.1 then implies that {Rα}α>0 has to be uniformly bounded, which contradicts
the first part of the proof.

With the additional assumption that ‖KRα‖L(V,V) is bounded, we can even show that
Rαf diverges for all f 6∈ D(K†).

Theorem 3.3. Let K ∈ L(U ,V) and {Rα}α>0 be a linear regularisation of K†, and define
uα := Rαf . If

sup
α>0
‖KRα‖L(V,V) <∞ ,

then ‖uα‖U →∞ for f /∈ D(K†).

Proof. The convergence in case of f ∈ D(K†) simply follows from Definition 3.1. We
therefore only need to consider the case f /∈ D(K†). We assume that there exists a sequence
αk → 0 such that ‖uαk‖U is uniformly bounded. Then there exists a weakly convergent
subsequence uαkl with some limit u ∈ U , cf. [9, Section 2.2, Theorem 2.1]. As continuous
linear operators are also weakly continuous, we further have Kuαkl ⇀ Ku. However, as
KRα are uniformly bounded operators, we also conclude Kuαkl = KRαklf ⇀ PR(K)

f for
all f ∈ V (and not just f ∈ D(K†)), because of Corollary 3.1. Hence, we further conclude
f ∈ R(K) and therefore f ∈ D(K†) in contradiction to the assumption f /∈ D(K†).
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highlow regularisation

high

low

error

data error
approximation error
total error

Figure 3.2: The total error between a regularised solution and the minimal norm solution decom-
poses into the data error and the approximation error. These two errors have opposing trends: For
a small regularisation parameter α the error in the data gets amplified through the ill-posedness
of the problem and for large α the operator Rα is a poor approximation of the Moore–Penrose
inverse.

Usually we cannot expect f ∈ D(K†) for most applications, due to measurement and
modelling errors. However, we assume that there exists f ∈ D(K†) such that we have∥∥∥f − f δ∥∥∥

V
≤ δ

for measured data f δ ∈ V. For linear regularisations we can split the total error between
the regularised solution of the noisy problem Rαf

δ and the minimal norm solution of the
noise-free problem u† = K†f as

‖Rαf δ − u†‖U ≤ ‖Rαf δ −Rαf‖U + ‖Rαf − u†‖U
≤ δ‖Rα‖L(V,U)︸ ︷︷ ︸

data error

+ ‖Rαf −K†f‖U︸ ︷︷ ︸
approximation error

. (3.7)

The first term of (3.7) is the data error ; this term unfortunately does not stay bounded
for α → 0, which we can conclude from Theorem 3.2. The second term, known as the
approximation error, however vanishes for α→ 0, due to the pointwise convergence of Rα
to K†. Hence it becomes evident from (3.7) that a good choice of α depends on δ, and
needs to be chosen such that the approximation error becomes as small as possible, whilst
the data error is being kept at bay. See Figure 3.2 for a visualisation of this situation. In
the following we are going to discuss typical strategies for choosing α appropriately.

3.1 Parameter-choice strategies

In this section we want to discuss three standard rules for the choice of the regularisation
parameter α and whether they lead to (convergent) regularisation methods.
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Definition 3.3. A function α : R>0 × V → R>0, (δ, f δ) 7→ α(δ, f δ) is called parameter
choice rule. We distinguish between

(a) a-priori parameter choice rules, if they depend on δ only;

(b) a-posteriori parameter choice rules, if they depend on δ and f δ;

(c) heuristic parameter choice rules, if they depend on f δ only.

In case of (a) or (c) we would simply write α(δ), respectively α(f δ), instead of α(δ, f δ).

Definition 3.4. If {Rα}α>0 is a regularisation of K† and α is a parameter choice rule,
then the pair (Rα, α) is called convergent regularisation, if for all f ∈ D(K†) there exists
a parameter choice rule α : R>0 × V → R>0 such that

lim
δ→0

sup
{∥∥∥Rαf δ −K†f∥∥∥

U

∣∣∣ f δ ∈ V,∥∥∥f − f δ∥∥∥
V
≤ δ

}
= 0 (3.8)

and

lim
δ→0

sup
{
α(δ, f δ)

∣∣∣ f δ ∈ V,∥∥∥f − f δ∥∥∥
V
≤ δ

}
= 0 (3.9)

are guaranteed.

3.1.1 A-priori parameter choice rules

First of all we want to discuss a-priori parameter choice rules in more detail. In fact, it
can be shown that for every regularisation an a-priori parameter choice rule, and thus, a
convergent regularisation, exists.

Theorem 3.4. Let {Rα}α>0 be a regularisation of K†, for K ∈ L(U ,V). Then there exists
an a-priori parameter choice rule, such that (Rα, α) is a convergent regularisation.

Proof. Let f ∈ D(K†) be arbitrary but fixed. We can find a monotone increasing function
γ : R>0 → R>0 with limε→0 γ(ε) = 0 such that for every ε > 0 we have∥∥∥Rγ(ε)f −K†f

∥∥∥
U
≤ ε

2
,

due to the pointwise convergence Rα → K†.
As the operator Rγ(ε) is continuous for fixed ε, there exists ρ(ε) > 0 with∥∥Rγ(ε)g −Rγ(ε)f

∥∥
U ≤

ε

2
for all g ∈ V with ‖g − f‖V ≤ ρ(ε) .

Without loss of generality we can assume ρ to be a continuous, strictly monotone increasing
function with limε→0 ρ(ε) = 0. Then, due to the inverse function theorem there exists a
strictly monotone and continuous function ρ−1 on R(ρ) with limδ→0 ρ

−1(δ) = 0. We
continuously extend ρ−1 on R>0 and define our a-priori strategy as

α : R>0 → R>0, δ → γ(ρ−1(δ)) .

Then limδ→0 α(δ) = 0 follows. Furthermore, there exists δ := ρ(ε) for all ε > 0, such that
with α(δ) = γ(ε)∥∥∥Rα(δ)f

δ −K†f
∥∥∥
U
≤
∥∥∥Rγ(ε)f

δ −Rγ(ε)f
∥∥∥
U

+
∥∥∥Rγ(ε)f −K†f

∥∥∥
U
≤ ε

follows for all f δ ∈ V with ‖f − f δ‖V ≤ δ. Thus, (Rα, α) is a convergent regularisation
method.
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For linear regularisations we can characterise a-priori parameter choice strategies that
lead to convergent regularisation methods via the following theorem.

Theorem 3.5. Let {Rα}α>0 be a linear regularisation, and α : R>0 → R>0 an a-priori
parameter choice rule. Then (Rα, α) is a convergent regularisation method if and only if

(a) limδ→0 α(δ) = 0

(b) limδ→0 δ‖Rα(δ)‖L(V,U) = 0

Proof. ⇐: Let condition a) and b) be fulfilled. From (3.7) we then observe∥∥∥Rα(δ)f
δ −K†f

∥∥∥
U
→ 0 for δ → 0.

Hence, (Rα, α) is a convergent regularisation method.
⇒: Now let (Rα, α) be a convergent regularisation method. We prove that conditions 1
and 2 have to follow from this by showing that violation of either one of them leads to
a contradiction to (Rα, α) being a convergent regularisation method. If condition a) is
violated, (3.9) is violated and hence, (Rα, α) is not a convergent regularisation method. If
condition a) is fulfilled but condition b) is violated, there exists a null sequence {δk}k∈N
with δk‖Rα(δk)‖L(V,U) ≥ C > 0, and hence, we can find a sequence {gk}k∈N ⊂ V with
‖gk‖V = 1 and δk‖Rα(δk)gk‖U ≥ C̃ for some C̃. Let f ∈ D(K†) be arbitrary and define
fk := f + δkgk. Then we have on the one hand ‖f − fk‖V ≤ δk, but on the other hand the
norm of

Rα(δk)fk −K†f = Rα(δk)f −K†f + δkRα(δk)gk

cannot converge to zero, as the second term δkRα(δk)gk is bounded from below by con-
struction. Hence, (3.8) is violated for f δ = gk and thus, (Rα, α) is not a convergent
regularisation method.

3.1.2 A-posteriori parameter choice rules

In the following sections we are going to see that Theorem 3.5 basically means that α(δ)
cannot converge too quickly to zero in relation to δ; typical parameter choice strategies will
be of the form α(δ) = δp. However, finding an optimal choice of p often requires additional
information about u†, for instance in terms of source conditions that we are going to discuss
in Section 3.2.4. A-posteriori parameter choice rules have the advantage that they do not
require this additional information. The basic idea is as follows. We again have f ∈ D(K†)
and f δ with ‖f − f δ‖V ≤ δ, and now consider the residual between f δ and uα := Rαf

δ,
i.e.

‖Kuα − f δ‖V .

If we assume that u† is the minimal norm solution and f is given via f = Ku†, we
immediately observe that u† satisfies

‖Ku† − f δ‖V = ‖f − f δ‖V = δ .

Hence, it appears not to be useful to choose α(δ, f δ) with ‖Kuα(δ,fδ) − f δ‖V < δ, which
motivates Morozov’s discrepany principle.
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Definition 3.5 (Morozov’s discrepancy principle). Let α(δ, f δ) be chosen such that

‖Kuα(δ,fδ) − f δ‖V ≤ ηδ (3.10)

is satisfied, for given δ, f δ, and a fixed constant η > 1. Then uα(δ,fδ) = Rα(δ,fδ)f
δ is said

to satisfy Morozov’s discrepancy principle.

Remark 3.1. It is important to point out that (3.10) may never be fulfilled, as is the case
for f ∈ R(K)⊥. Following Lemma 2.3 (d), even for exact data f δ = f we observe

‖Ku† − f‖V = ‖KK†f − f‖V = ‖PR(K)
f − f‖V = ‖f‖V > δ

in this case, for δ being small enough. In order to avoid this scenario, we ideally ensure
that R(K) is dense in V, as this already implies R(K)⊥ = {0} due to Remark 2.1.

Practical a-posteriori regularisation strategies are usually designed as follows. We pick
a null sequence {αj}j∈N and iteratively compute uαj = Rαjf

δ for j ∈ {1, . . . , j∗}, j∗ ∈ N,
until uαj∗ satisfies (3.10). This procedure is justified by the following theorem.

Theorem 3.6. Let {Rα}α>0 be a regularisation of K ∈ L(U ,V), and let R(K) be dense
in V. Further, let {αj}j∈N be a strictly monotonically decreasing null sequence, and let
η > 1. If the family of operators {KRα}α>0 is uniformly bounded, there exists a finite
index j∗ ∈ N such that for all f ∈ D(K†) and f δ with ‖f − f δ‖V ≤ δ the inequalities

‖Kuαj∗ − f δ‖V ≤ ηδ < ‖Kuαj − f δ‖V

are satisfied for all j < j∗.

Proof. We know that KRα converges pointwise to KK† = PR(K)
in D(K†), which together

with the uniform boundedness assumption already implies pointwise convergence in V, as
we have already shown in the proof of Theorem 3.2. Hence, for all f ∈ D(K†) and f δ ∈ V
with ‖f − f δ‖V ≤ δ we can conclude

lim
j→∞

‖Kuαj − f δ‖V = lim
j→∞

‖KRαjf δ − f δ‖V =
∥∥∥PR(K)

f δ − f δ
∥∥∥
V

= inf
g∈R(K)

‖g − f δ‖V ≤ ‖f − f δ‖V ≤ δ .

We are going to demonstrate later that (3.10) in combination with specific regularisa-
tions is indeed a regularisation method. Before we do so, we want to conclude the discussion
of parameter choice strategies by investigating heuristic regularisation methods.

3.1.3 Heuristic parameter choice rules

Heuristic parameter choice rules do not require knowledge of the noise level δ, which makes
them popular strategies in practice. In the following we give three examples of popular
heuristic parameter choice rules.

Quasi-optimality principle For the first n elements of a null sequence, i.e. {αj}j∈{1,...,n},
we choose α(f δ) = αj∗ with

j∗ = arg min
1≤j<n

‖uαj+1 − uαj‖U .



34 3.2. SPECTRAL REGULARISATION METHODS

Hanke-Raus rule The parameter α(f δ) is chosen via

α(f δ) = arg min
α>0

1√
α
‖Kuα − f δ‖V .

L-curve method The parameter α(f δ) is chosen via

α(f δ) = arg min
α>0

‖uα‖U‖Kuα − f δ‖V .

Despite their popularity and the fact that they do not require any knowledge about δ,
heuristic parameter choice rules have one significant theoretical disadvantage. While any
regularisation can be equipped with an a-priori parameter choice rule to form a convergent
regularisation as seen in Theorem 3.4, heuristic parameter choice rules cannot lead to
convergent regularisations, a result that has become famous as the so-called Bakushinskĭı
veto [2].

Theorem 3.7. Let K ∈ L(U ,V) with R(K) 6= R(K). Then for any regularisation
{Rα}α>0 and any heuristic parameter choice rule α(f δ) the pair ({Rα}, α) is not a con-
vergent regularisation.

Proof. Assume that ({Rα}, α) is a convergent regularisation method and that the param-
eter choice rule is heurstic, i.e. α = α(f δ). Then it follows from (3.8) that

lim
δ→0

sup
{∥∥∥Rα(fδ)f

δ −K†f
∥∥∥
U

∣∣∣ f δ ∈ V,∥∥∥f − f δ∥∥∥
V
≤ δ

}
= 0

and in particular Rα(f)f = K†f for all f ∈ D(K†). Thus, for any sequence {fj}j∈N ⊂
D(K†) which converges to f ∈ D(K†) we have that

lim
j→∞

K†fj = lim
j→∞

Rα(fj)fj = K†f

which shows that K† is continuous. It follows from Theorem 2.5 that the range of K is
closed, which contradicts the assumption.

Remark 3.2. We want to point out that Theorem 3.7 does not automatically make any
heuristic parameter choice rule useless, for two reasons. Firstly, because Theorem 3.7
applies to infinite dimensional problems. Hence, discretised, ill-conditioned problems can
still benefit from heuristic parameter choice rules. Secondly, the proof of Theorem 3.7
explicitly uses perturbed data fj ∈ D(K†) to show the contradiction. For actual perturbed
data f δ however, it is quite unusual that they will satisfy f δ ∈ D(K†). It can indeed be
shown that, under the additional assumption f δ 6∈ D(K†), a lot of regularisation strategies
together with a whole class of heuristic parameter choice strategies can be turned into
convergent regularisations.

3.2 Spectral regularisation methods

Now we revisit (3.1) and finally prove that these methods are regularisation methods for
piecewise continuous functions gα satisfying (3.2).
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Theorem 3.8. Let gα : R>0 → R be a piecewise continuous function satisfying (3.2),
limα→0 gα(σ) = 1

σ and

sup
α,σ

σgα(σ) ≤ γ , (3.11)

for some constant γ > 0. If Rα is defined as in (3.1), we have

Rαf → K†f as α→ 0,

for all f ∈ D(K†).

Proof. From the singular value decomposition of K† and the definition of Rα we obtain

Rαf −K†f =

∞∑
j=1

(
gα(σj)−

1

σj

)
〈f, vj〉V uj =

∞∑
j=1

(σjgα(σj)− 1) 〈u†, uj〉U uj .

From (3.11) we can conclude∣∣∣(σjgα(σj)− 1) 〈u†, uj〉U
∣∣∣ ≤ (1 + γ)‖u†‖U ,

and hence, each element of the sum stays bounded. Thus, we can also estimate

‖Rαf −K†f‖2U =

∞∑
j=1

|σjgα(σj)− 1|2
∣∣∣〈u†, uj〉U ∣∣∣2 ≤ (1 + γ)2

∞∑
j=1

∣∣∣〈u†, uj〉U ∣∣∣2
= (1 + γ)2‖u†‖2U <∞

and conclude that ‖Rαf −K†f‖U is bounded from above. This allows the application of
the reverse Fatou lemma, which yields the estimate

lim sup
α→0

∥∥∥Rαf −K†f∥∥∥2

U
≤ lim sup

α→0

∞∑
j=1

|σjgα(σj)− 1|2
∣∣∣〈u†, uj〉U ∣∣∣2

≤
∞∑
j=1

∣∣∣ lim
α→0

σjgα(σj)− 1
∣∣∣2 ∣∣∣〈u†, uj〉U ∣∣∣2 .

Due to the pointwise convergence of gα(σj) to 1/σj we obtain limα→0 σjgα(σj) − 1 = 0.
Hence, we have

∥∥Rαf −K†f∥∥U → 0 for α→ 0 for all f ∈ D(K†).

Proposition 3.1. Let the same assumptions hold as in Theorem 3.8. Further, let α be an
a-priori parameter choice rule. Then (Rα(δ), α(δ)) is a convergent regularisation method if

lim
δ→0

δCα(δ) = 0

is guaranteed.

Proof. The result follows immediately from ‖Rα(δ)‖L(V,U) ≤ Cα(δ) and Theorem 3.5.
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3.2.1 Convergence rates

Knowing that spectral regularisation methods of the form (3.1) together with (3.2) repre-
sent convergent regularisation methods, we now want to understand how the error in the
data propagates to the error in the reconstruction.

Theorem 3.9. Let the same assumptions hold for gα as in Theorem 3.8. If we define
uα := Rαf and uδα := Rαf

δ, with f ∈ D(K†), f δ ∈ V and ‖f − f δ‖V ≤ δ, then

‖Kuα −Kuδα‖V ≤ γδ , (3.12)

and

‖uα − uδα‖U ≤ Cαδ (3.13)

hold true.

Proof. From the singular value decomposition we can estimate

‖Kuα −Kuδα‖2V ≤
∞∑
j=1

σ2
j gα(σj)

2|〈f − f δ, vj〉V |2

≤ γ2
∞∑
j=1

|〈f − f δ, vj〉V |2 = γ2‖f − f δ‖2V ≤ γ2δ2 ,

which yields (3.12). In the same fashion we can estimate

‖uα − uδα‖2U ≤
∞∑
j=1

gα(σj)
2|〈f − f δ, vj〉V |2

≤ C2
α

∞∑
j=1

|〈f − f δ, vj〉V |2 = C2
α‖f − f δ‖2V ≤ C2

αδ
2 ,

to obtain (3.13).

Remark 3.3. At first glance (3.13) gives the impression as if the error in the reconstruction
is also of order δ. This, however, is not the case, as Cα also depends on δ, as we have seen
in Proposition 3.1. The condition limδ→0 δCα = 0 will in particular force Cα to decay more
quickly than δ. Hence, Cαδ will be of order δν , with 0 < ν < 1.

Combining the assertions of Theorem 3.8, Proposition 3.1 and Theorem 3.9, we obtain
the following convergence results of the regularised solutions.

Proposition 3.2. Let the assumptions of Theorem 3.8, Proposition 3.1 and Theorem 3.9
hold true. Then,

uα(δ) → u†

is guaranteed as δ → 0.
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3.2.2 Truncated singular value decomposition

As a first example for a spectral regularisation of the form (3.1) we have considered the
so-called truncated singular value decomposition in Example 3.1. From (3.3) we imme-
diately observe gα(σ) ≤ Cα = 1/α. Thus, according to Proposition 3.1 the truncated
singular value decomposition, together with an a-priori parameter choice strategy satisfy-
ing limδ→0 α(δ) = 0, is a convergent regularisation method if limδ→0 δ/α(δ) = 0.

Moreover, we observe supσ,α σgα(σ) = γ = 1 and hence, we obtain the error estimates
‖Kuα −Kuδα‖V ≤ δ and ‖uα − uδα‖U ≤ δ/α(δ) as a consequence of Theorem 3.9.

Let K ∈ K(U ,V) with singular system {σj , uj , vj)}j∈N, and choose for δ > 0 an index
function j∗ : R>0 → N with j∗(δ) → ∞ for δ → 0 and limδ→0 δ/σj∗(δ) = 0. We can
then choose α(δ) = σj∗(δ) as our a-priori parameter choice rule to obtain a convergent
regularisation.

Note that in practice a larger δ implies that more and more singular values have to be
cut off in order to guarantee a stable recovery that successfully suppresses the data error.

3.2.3 Tikhonov regularisation

The second example we were considering was Tikhonov regularisation in Example 3.2,
where we have shifted the singular values of K∗K by a constant factor, which will be
associated with the regularisation parameter α.

In case of gα as defined in (3.5) we observe limα→0 gα(σ) = 1/σ for σ > 0. Further,
we can estimate gα(σ) ≤ 1/(2

√
α) = Cα due to σ2 + α ≥ 2

√
ασ. Moreover, we discover

σgα(σ) = σ2/(σ2 +α) < 1 =: γ for α > 0. Consequently, we have to ensure δ/(2
√
α(δ))→

0 for δ → 0 to obtain a convergent regularisation, and in that case get the estimates
‖Kuα −Kuδα‖V ≤ δ and ‖uα − uδα‖U ≤ δ/(2

√
α(δ)). Thus, equipping Rα(δ) for instance

with the a-priori parameter choice rule α(δ) = δ/4 will lead to a convergent regularisation
for which we have ‖uα − uδα‖U = O(

√
δ).

Note that Tikhonov regularisation can be computed without knowledge of the singular
system. Considering the equation (K∗K + αI)uα in terms of the singular value decompo-
sition, we observe

∞∑
j=1

σj
σ2
j + α

〈f, vj〉V K∗ Kuj︸︷︷︸
=σjvj︸ ︷︷ ︸

=σ2
juj

+
∞∑
j=1

ασj
σ2
j + α

〈f, vj〉V uj

=
∞∑
j=1

σj(σ
2
j + α)

σ2
j + α

〈f, vj〉V uj =
∞∑
j=1

σj〈f, vj〉V uj = K∗f .

Hence, the Tikhonov-regularised solution uα can be obtained by solving

(K∗K + αI)uα = K∗f (3.14)

for uα. The advantage in computing uα via (3.14) is that its computation does not require
the singular value decomposition ofK, but only involves the inversion of a linear, well-posed
operator equation with a symmetric, positive definite operator.

3.2.4 Source-conditions

Before we continue to investigate other examples of regularisations we want to briefly
address the question of the convergence speed of a regularisation method. From Theorem
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3.9 we have already obtained a convergence rate result; however, with additional regularity
assumptions on the (unknown) minimal norm solution we are able to improve those. The
regularity assumptions that we want to consider are known as source conditions, and are
of the form

∃w ∈ U : u† = (K∗K)µw . (3.15)

The power µ > 0 of the operator is understood in the sense of the consider the µ-th power
of the singular values of the operator K∗K, i.e.

(K∗K)µw =
∞∑
j=1

σ2µ
j 〈w, uj〉Uuj .

Example 3.3 (Differentiation). We want to take a look at what (3.15) actually means
in the case of a specific example. We therefore again consider the inverse problem of
differentiation, i.e.

(Ku)(y) =

∫ y

0
u(x) dx .

In case of µ = 1 (3.15) reads as

u†(x) =

∫ 1

x

∫ y

0
w(z) dz dy .

due to (2.10). Hence, (3.15) does simply imply that u† has to be twice weakly differentiable.
It becomes even more obvious if we look at twice differentiable u†. In that case applying
the Leibniz differentiation rule for parameter integrals leaves us with

(u†)′′(x) = −w(x) .

Hence, any twice differentiable u† automatically satisfies the source condition (3.15) for
µ = 1.
Similar results follow for different choices of µ ∈ N.

The rate of convergence of a regularisation scheme to the minimal norm solution now
depends on the specific choice of gα. We assume that gα satisfies

σ2µ|σgα(σ)− 1| ≤ ωµ(α) ,

for all σ > 0. In case of the truncated singular value decomposition we would for instance
have ωµ(α) = α2µ. With this additional assumption, we can improve the estimate in
Theorem 3.8 as follows:

‖Rαf −K†f‖2V ≤
∞∑
j=1

|σjgα(σj)− 1|2|〈u†, uj〉U |2

=

∞∑
j=1

|σjgα(σj)− 1|2σ4µ
j |〈w, uj〉U |2

≤ ωµ(α)2‖w‖2U
Hence, we have obtained the estimate

‖uα − u†‖U ≤ ωµ(α)‖w‖U .
Together with (3.7) we can further estimate

‖uα(δ) − u†‖U ≤ ωµ(α)‖w‖U + Cαδ . (3.16)
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Example 3.4. In case of the truncated singular value decomposition we know from Section
3.2.2 that Cα = 1/α, and we can further conclude ωµ(α) = α2µ. Hence, (3.16) simplifies
to

‖uα(δ) − u†‖U ≤ α2µ‖w‖U + δα−1 (3.17)

in this case. In order to make the right-hand-side of (3.17) as small as possible, we have
to choose α such that

α =

(
δ

2µ‖w‖U

) 1
2µ+1

.

With this choice of α we estimate

‖uα(δ) − u†‖U ≤ 2
1−2µ
1+2µ︸ ︷︷ ︸
≤2

µ
1−2µ
1+2µ︸ ︷︷ ︸
≤1

δ
2µ

2µ+1 ‖w‖
1

2µ+1

U

≤ 2δ
2µ

2µ+1 ‖w‖
1

2µ+1

U .

It is important to note that no matter how large µ is, the rate of convergence δ
2µ

2µ+1 will
always be slower than δ, due to the ill-posedness of the inversion of K.

3.2.5 Asymptotic regularisation

Another form of regularisation is asymptotic regularisation of the form

∂tu(t) = K∗ (f −Ku(t))

u(0) = 0
. (3.18)

As the linear operator K does not change with respect to the time t, we can make the
Ansatz of writing u(t) in terms of the singular value decomposition of K as

u(t) =

∞∑
j=1

γj(t)uj , (3.19)

for some function γ : R→ R. From the initial conditions we immediately observe γ(0) = 0.
From the singular value decomposition and (3.18) we further see

∞∑
j=1

γ′j(t)uj =
∞∑
j=1

σj

〈f, vj〉V − σjγ(t) 〈uj , uj〉U︸ ︷︷ ︸
=‖uj‖2U=1

uj .

Hence, by equating the coefficients we get

γ′j(t) = σj〈f, vj〉V − σ2
j γj(t) ,

and together with γj(0) we obtain

γj(t) =
(

1− e−σ2
j t
) 1

σj
〈f, vj〉V
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as a solution for all j and hence, (3.19) reads as

u(t) =
∞∑
j=1

(
1− e−σ2

j t
) 1

σj
〈f, vj〉Vuj .

If we substitute t = 1/α, we obtain the regularisation

uα =

∞∑
j=1

(
1− e−

σ2j
α

)
1

σj
〈f, vj〉Vuj

with gα(σ) =

(
1− e−σ

2

α

)
1
σ . We immediately see that gα(σ)σ ≤ 1 =: γ, and due to

ex ≥ 1 +x we further observe 1− e−σ
2

α ≤ σ2/α and therefore (1− e−σ
2

α )/σ ≤ maxj σj/α =
σ1/α = ‖K‖L(U ,V)/α =: Cα.

3.2.6 Landweber iteration

If we approximate (3.18) via a forward finite-difference discretisation, we end up with the
iterative procedure

uk+1 − uk
τ

= K∗
(
f −Kuk

)
, (3.20)

⇔ uk+1 = uk + τK∗
(
f −Kuk

)
,

⇔ uk+1 = (I − τK∗K)uk + τK∗f ,

for some τ > 0 and u0 ≡ 0. Iteration (3.20) is known as the so-called Landweber iteration.
We assume f ∈ D(K†) first, and with the singular value decomposition of K and K∗ we
obtain

∞∑
j=1

〈uk+1, uj〉Uuj =

∞∑
j=1

((
1− τσ2

j

)
〈uk, uj〉U + τσj〈f, vj〉V

)
uj , (3.21)

and hence, by equating the individual summands

〈uk+1, uj〉U =
(
1− τσ2

j

)
〈uk, uj〉U + τσj〈f, vj〉V . (3.22)

Assuming u0 ≡ 0, summing up equation (3.22) yields

〈uk, uj〉U = τσj〈f, vj〉V
k∑
i=1

(1− τσ2
j )
k−i . (3.23)

The following Lemma will help us simplifying (3.23).

Lemma 3.1. For k ∈ N \ {1} we have

k∑
i=1

(1− τσ2)k−i =
1−

(
1− τσ2

)k
τσ2

. (3.24)
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Proof. Equation (3.24) can simply be verified via induction. We immediately see that

2∑
i=1

(1− τσ2)2−i = 1 + (1− τσ2) =
1− (1− 2τσ2 + τ2σ4)

τσ2
=

1−
(
1− τσ2

)2
τσ2

serves as as our induction base. Considering k → k + 1, we observe

k+1∑
i=1

(1− τσ2)k+1−i = 1 +
k∑
i=1

(1− τσ2)k+1−i

= 1 + (1− τσ2)

k∑
i=1

(1− τσ2)k−i

= 1 + (1− τσ2)
1−

(
1− τσ2

)k
τσ2

=
1−

(
1− τσ2

)k+1

τσ2
,

and we are done.

If we now insert (3.24) into (3.23) we therefore obtain

〈uk, uj〉U =
(

1− (1− τσ2
j )
k
) 1

σj
〈f, vj〉V . (3.25)

The important consequence of Equation (3.25) is that we now immediately see that 〈uk, uj〉U →
〈u†, uj〉U if we ensure (1 − τσ2

j )
k → 0. In other words, we need to choose τ such that

|1− τσ2
j | < 1 (respectively 0 < τσj < 2) for all j. As in the case of asymptotic regularisa-

tion we exploit that σ1 = ‖K‖L(U ,V) > σj for all j and select τ such that

0 < τ <
2

‖K‖2L(U ,V)

(3.26)

is satisfied. If we interpret the iteration number as the regularisation parameter α := 1/k,
we obtain the regularisation method

uα = Rαf =
∞∑
j=1

(
1−

(
1− τσ2

j

) 1
α

) 1

σj
〈f, vj〉V

with gα(σ) =
(

1− (1− τσ2)
1
α

)
/σ.

Landweber Iteration & the discrepancy principle

To conclude this section on the Landweber iteration we want to prove convergence rates
given u† satisfies a source condition. We further want to demonstrate that Landweber
iteration in combination with the a-posteriori parameter choice rule defined in Definition
3.5 is a sensible strategy that ensures uk → u† as long as the discrepancy principle is
violated. Following the introduction of the source condition in Section 3.2.4, we want to
assume a source condition similar (3.15) for µ = 1/2, i.e. there exists a w ∈ V such that

u† = K∗w (3.27)

is satisfied. Under that additional assumption we can conclude the following convergence
rate in the case of noise-free data f δ = f .
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Lemma 3.2. Let (3.27) be satisfied. Then the Landweber iterates (3.20) satisfy

‖uk − u†‖U = O
(

1√
k

)
= O

(√
α
)
,

for f = Ku†.

Proof. We start proving this statement by showing that the inner product of uk − u† with
a singular vector uj simplifies to

〈uk − u†, uj〉U = 〈uk, uj〉U − 〈u†, uj〉U
=
(

1− (1− τσ2
j )
k
)
〈u†, uj〉U − 〈u†, uj〉U

= (1− τσ2
j )
k〈u†, uj〉U

= σj(1− τσ2
j )
k︸ ︷︷ ︸

=:r(σj)

〈w, uj〉U ,

with the second equality following from Equation (3.25). As our next step, we want to find
an upper bound for r(σj). We therefore analyse the concave function r(σ) = σ(1− τσ2)k

by computing its first derivative, setting it to zero and inserting the resulting argument
that maximises r. This yields

max
σ

r(σ) =

(
2k

2k+1

)k
√
τ(2k + 1)

≤ 1√
τ(2k + 1)

for k ∈ N. Hence, we obtain the estimate

∣∣∣〈uk − u†, uj〉U ∣∣∣ ≤ |〈w, uj〉U |√
τ(2k + 1)

,

and consequently

‖uk − u†‖U =

√√√√ ∞∑
j=1

|〈uk − u†, uj〉U |2 ≤
1√

τ(2k + 1)

√√√√ ∞∑
j=1

|〈w, uj〉U |2 =
‖w‖U√
τ(2k + 1)

.

Together with the stepsize-constraint (3.26) we can further conclude convergence of the
iterates to a least squares solution.

Lemma 3.3. Let (3.26) be satisfied. Then the iterates (3.20) satisfy

‖Kuk+1 − f‖V ≤ ‖Kuk − f‖V ,

for f = Ku† and all k ∈ N, where equality only holds if uk already satisfies the normal
equation (2.3).
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Proof. We easily estimate

‖Kuk+1 − f‖2V = ‖K(I − τK∗K)uk − (I − τK∗)f‖2V
= ‖Kuk − f − τKK∗(Kuk − f)‖2V
= ‖Kuk − f‖2V − 2τ〈K∗(Kuk − f),K∗(Kuk − f)〉U + τ2‖KK∗(Kuk − f)‖2V
= ‖Kuk − f‖2V + τ

(
τ‖KK∗(Kuk − f)‖2V − 2‖K∗(Kuk − f)‖2U

)
≤ ‖Kuk − f‖2V + τ‖K∗(Kuk − f)‖2U

(
τ‖K‖2L(U ,V) − 2

)
︸ ︷︷ ︸

<0

≤ ‖Kuk − f‖2V ,

which proves the statement.

Lemma 3.2 and Lemma 3.3 allow us to conclude the following proposition.

Proposition 3.3. The Landweber iteration is a linear regularisation in the sense of Defi-
nition 3.2.

In order to show that the Landweber iteration (3.20) in combination with the discrep-
ancy principle (3.10) is also a convergent regularisation, we obviously have to look at the
case of noisy data f δ with ‖f δ − f‖V ≤ δ for f = Ku†. We denote the solution of (3.20)
in case of noisy data f δ as ukδ for all k ∈ N and obtain the following estimate for the norm
between ukδ and u†.

Lemma 3.4. Let (3.27) be satisfied. Then the Landweber iterates (3.20) satisfy

‖ukδ − u†‖U ≤ τkδ‖K‖L(U ,V) +
‖w‖U√
τ(2k − 1)

(3.28)

for k ∈ N \ {1}, f = Ku†, f δ ∈ V and ‖f δ − f‖V ≤ δ.

Proof. Similar to the proof of Lemma 3.2 we consider the inner product between ukδ − u†
and a singular vector uj , which yields

〈ukδ − u†, uj〉U =
1

σj

((
1− (1− τσ2

j )
k
)
〈f δ, vj〉V − 〈f, vj〉V

)
=

1

σj

(
1− (1− τσ2

j )
k
)
〈f δ − f, vj〉V − σj(1− τσ2

j )
k〈w, vj〉V .

Hence, for k > 1 we can use (3.24) to estimate

1

σj

(
1− (1− τσ2

j )
k
) ∣∣∣〈f δ − f, vj〉V ∣∣∣ = τσj

k∑
j=1

(1− τσ2
j )
k−j

∣∣∣〈f δ − f, vj〉V ∣∣∣
≤ τkσj

∣∣∣〈f δ − f, vj〉V ∣∣∣ ≤ τkσ1

∣∣∣〈f δ − f, vj〉V ∣∣∣ .
Together with the result from Lemma 3.2 we conclude

‖ukδ − u†‖U ≤ τkδ‖K‖L(U ,V) +
‖w‖U√
τ(2k − 1)

.
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Note that the decrease of the residual in Lemma 3.3 holds true for all f ∈ V. As we
obviously do not want to iterate until infinity – this would blow up the data error in (3.28)
– this decrease together with the stepsize-constraint (3.26) motivates the use of (3.10) as
a stopping criterion. The following lemma shows that with (3.20) we indeed minimise the
difference between ukδ and u† (in terms of the U norm) as long as (3.10) is violated.

Lemma 3.5. Let (3.26) be satisfied. Then the iterates of (3.20) satisfy

‖uk+1
δ − u†‖U ≤ ‖ukδ − u†‖U

for k ≤ k∗, f = Ku† and f δ ∈ V with ‖f δ − f‖V ≤ δ. Here, k∗ satisfies the discrepancy
principle (3.10) for η = 2/(2 − τ‖K‖2L(U ,V)) > 1. Moreover, equality can only be attained
for δ = 0 and ukδ satisfying the normal equation (2.3).

Proof. We prove the statement by showing that ‖uk+1
δ − u†‖2U − ‖ukδ − u†‖2U is negative

whilst the discrepancy principle is not violated. We estimate

‖uk+1
δ − u†‖2U − ‖ukδ − u†‖2U = ‖ukδ − τK∗(Kukδ − f δ)− u†‖2U − ‖ukδ − u†‖2U

= τ2‖K∗(Kukδ − f δ)‖2U − 2τ〈Kukδ − f δ,Kukδ − f〉V
≤ τ2‖K‖2L(U ,V)‖Kukδ − f δ‖2V − 2τ 〈Kukδ − f δ,Kukδ − f + f δ − f δ〉V︸ ︷︷ ︸

=‖Kukδ−fδ‖
2
V+〈Kukδ−fδ,fδ−f〉V

= τ
(
τ‖K‖2L(U ,V) − 2

)
‖Kukδ − f δ‖2V + 2τ〈f − f δ,Kukδ − f δ〉V

≤ τ
(
τ‖K‖2L(U ,V) − 2

)
‖Kukδ − f δ‖2V + 2τδ‖Kukδ − f δ‖V

= −τ‖Kukδ − f δ‖V
((

2− τ‖K‖2L(U ,V)

)
‖Kukδ − f δ‖V − 2δ

)
= −2τ

η
‖Kukδ − f δ‖V

(
‖Kukδ − f δ‖V − ηδ

)
.

Hence, for k ≤ k∗ we conclude ‖uk+1
δ − u†‖U ≤ ‖ukδ − u†‖U .

3.3 Tikhonov regularisation revisited

We conclude this chapter by showing that Tikhonov regularisation can not just be in-
terpreted as the spectral regularisation (3.6) and the solution of the well-posed operator
equation (3.14), but also as the minimiser of a functional.

Theorem 3.10. For f ∈ V the Tikhonov-regularised solution uα = Rαf with Rα as defined
in (3.6) is uniquely determined as the global minimiser of the Tikhonov-functional

Tα(u) :=
1

2
‖Ku− f‖2V +

α

2
‖u‖2U . (3.29)

Proof. ⇒: Let uα be the Tikhonov-regularised solution and we show that it is also a global
minimiser. A global minimiser û ∈ U of Tα(û) is characterised via Tα(û) ≤ Tα(u) for all
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u ∈ U . Hence, it follows from

Tα(u)− Tα(uα) =
1

2
‖Ku− f‖2V +

α

2
‖u‖2U −

1

2
‖Kuα − f‖2V −

α

2
‖uα‖2U

=
1

2
‖Ku‖2V − 〈Ku, f〉+

α

2
‖u‖2U −

1

2
‖Kuα‖2V + 〈Kuα, f〉 −

α

2
‖uα‖2U

+ 〈(K∗K + αI)uα −K∗f, uα − u〉︸ ︷︷ ︸
=0

=
1

2
‖Ku−Kuα‖2V +

α

2
‖u− uα‖2U

≥ 0

that uα is a global minimiser of Tα.
⇐: Let now û be a global minimiser. If we have Tα(û) ≤ Tα(u) (for all u ∈ U), it follows
with u = û+ τv for arbitrary τ > 0 and fixed v ∈ U that

0 ≤ Tα(u)− Tα(û) =
τ2

2
‖Kv‖2V +

τ2α

2
‖v‖2U + τ〈(K∗K + αI)û−K∗f, v〉U

holds true. Dividing by τ and subsequent consideration of the limit τ ↓ 0 thus yields

〈(K∗K + αI)û−K∗f, v〉U ≥ 0 , for all v ∈ U .

Thus (K∗K + αI)û − K∗f = 0 and we conclude û = uα, i.e. a global minimiser is the
Tikhonov-regularised solution. This also shows that the global minimiser of the Tikhonov
functional (3.29) is unique.

This result paves the way for a generalisation of Tikhonov regularisation to a much
broader class of regularisation methods that we want to discuss in the following chapter.
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Chapter 4

Variational regularisation

At the end of the last chapter we have seen that Tikhonov regularisation1 Rαf can be
characterised as the solution of the minimisation problem

Rαf = arg min
u∈U

{1

2
‖Ku− f‖2V +

α

2
‖u‖2U

}
.

It is well known that the solution to an unconstrained minimisation problem has a vanishing
derivative. In function spaces, the (Gâteaux-) derivative is also called the “first variation”
such that minimisation problems are also called variational problems and methods that
rely on minimising a functional variational methods. In this section we want to investigate
variational methods for regularisation of linear inverse problems. To do so we will generalise
Tikhonov regularisation by choosing different regularisation functionals J : U → R and
compute regularised solutions by minimising the functional

Φα,f (u) :=
1

2
‖Ku− f‖2V + αJ(u) .

Regularisation of this form is sometimes called Tikhonov-type regularisation but we will
refer to this as variational regularisation. Before we have a look at the theory behind
variational regularisation such as the existence and uniqueness of minimisers we will discuss
several examples of regularisation functionals J .

Example 4.1 (Tikhonov-Philipps regularisation). The easiest way to extend classical
Tikhonov regularisation to a more general regularisation method is to replace 1

2‖u‖2U by
1
2‖Du‖2Z where D : U → Z is a linear (not necessarily bounded) operator and we thus
minimise

1

2
‖Ku− f‖2V +

α

2
‖Du‖2Z ,

which became known as Tikhonov-Philipps regularisation. While Tikhonov regularisation
penalises the norm of u, in Tikhonov-Philipps regularisation only certain features of u
(depending on the choice of D) are penalised. The most frequent used operator D in
imaging applications is the gradient operator ∇ such that the regulariser J corresponds
to the semi-norm on H1(Ω) which is the Sobolev space of functions u ∈ L2(Ω) such that
the weak derivative ∇u exists and ∇u ∈ L2(Ω,Rn). By using this regulariser, only the
variations in u but not the actual intensities are penalised which helps to control noise
without a bias of the intensities towards zero.

1This regularisation is called ridge regression in the statistical literature.
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If the operator D is given by Du = (u,∇u) and Z = L2(Ω) × L2(Ω,Rn) is equipped
with the natural inner product for product spaces, then

J(u) =
1

2
‖Du‖2Z =

1

2
‖u‖2L2 +

1

2
‖∇u‖2L2

is the norm on H1(Ω) and it corresponds to classical Tikhonov regularisation on H1(Ω).

Example 4.2 (`1-regularisation). When it comes to non-injective operators K ∈ L(`1, `2)
between sequence spaces, the `1-norm, i.e. ‖u‖`1 :=

∑∞
j=1 |uj | is often used as a regulariser,

in order to enforce sparse solutions. The corresponding minimisation problem reads as

min
u∈`1

{
1

2
‖Ku− f‖2`2 + α‖u‖1

}
. (4.1)

This problems is also called lasso in the statistical literature. One can show that minimisers
of (4.1) are always sparse in the sense that they have finite support, i.e. | supp(u)| < ∞
with supp(u) = {i ∈ N |ui 6= 0}. This is in contrast to solutions of the Tikhonov regularised
problem which may not be sparse. For a finite dimensional example see Figure 4.1.

minimal `2-norm minimal `1-norm

Figure 4.1: Non-injective operators have a non-trivial kernel such that the inverse problem has
more than one solution and the solutions form an affine subspace visualised by the solid line.
Different regularisation functionals favour different solutions. The circle and the diamond indicate
all points with constant `2-norm, respectively `1-norm, and the minimal `2-norm and `1-norm
solutions are the intersections of the line with the circle, respectively the diamond. As it can
be seen, the minimal `2-norm solution has two non-zero components while the minimal `1-norm
solution has only one non-zero component and thus is sparser.

Example 4.3 (Elastic net). Another regularisation method from statistics is the elastic
net, where the regulariser is the weighted sum of the `1-norm and the squared `2-norm:

J(u) = ‖u‖`1 +
β

2
‖u‖2`2 .

Here the idea is to combine two favorable models in order to get sparse solutions with more
stability. As `1 ⊂ `2 we could either consider the elastic net on the Banach space `1 or on
the Hilbert space `2. In case we decide to do the latter, we can extend the elastic net such
that

J(u) =

{
‖u‖`1 + β

2 ‖u‖2`2 if u ∈ `1
∞ if u ∈ `2 \ `1

.
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Figure 4.2: The absolute value function on the left is in H1,1(Ω), Ω = [−1, 1], while the Heaviside
function on the right is not. The solid dot at a jump indicates the value that the function takes.
However, the Heaviside function is in BV(Ω) which shows that BV(Ω) is larger than H1,1(Ω).
Moreover, it shows that BV(Ω) includes function with discontinuities which is a favourable model
for images with sharp edges.

Intuitively, the value ∞ makes sure that a minimiser will never be in `2 \ `1 but we will
discuss this aspect in more detail later.

Example 4.4 (Total variation). Total variation as a regulariser has originally been intro-
duced for image-denoising and -restoration applications with the goal to preserve edges in
images, respectively discontinuities in signals [13]. For smooth signals u ∈ H1,1(Ω), i.e.
u ∈ L1(Ω) and has a weak derivative ∇u ∈ L1(Ω,Rn), the total variation is simply defined
as the semi-norm on the Sobolev space H1,1(Ω)

J(u) = TV(u) :=

∫
Ω
‖∇u(x)‖2 dx .

However, functions in H1,1(Ω) may not allow discontinuities which are useful in imaging
applications to model images with sharp edges.

To allow discontinuities while still preserving some regularity (otherwise we could model
images in L1(Ω) for instance) we generalise the definition of the total variation. It is well-
known (e.g. Cauchy–Schwarz inequality) that for x, v ∈ Rn with ‖v‖2 ≤ 1 we have that
〈v, x〉 ≤ ‖x‖2. Thus, for any test function ϕ ∈ D(Ω,Rn) with

D(Ω,Rn) :=
{
ϕ ∈ C∞0 (Ω;Rn)

∣∣∣ sup
x∈Ω
‖ϕ(x)‖2 ≤ 1

}
we have that

TV(u) =

∫
Ω
‖∇u(x)‖2 dx ≥

∫
Ω
〈∇u(x), ϕ(x)〉 dx = −

∫
Ω
u(x) divϕ(x) dx

where the last equality is due to partial integration (Gauss’ divergence theorem). In fact
one can show that

TV(u) = sup
ϕ∈D(Ω,Rn)

∫
Ω
u(x) divϕ(x) dx ,

which gives rise to the definition of functions of bounded variation.

BV(Ω) :=
{
u ∈ L1(Ω)

∣∣∣ ‖u‖BV := ‖u‖L1 + TV(u) <∞
}

It can be shown that BV(Ω) is much larger than H1,1(Ω) and contains functions with
discontinuities, see examples in Figure 4.2.
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Example 4.5 (Maximum-entropy regularisation). Maximum-entropy regularisation is of
particular interest if solutions of the inverse problem are assumed to be probability density
functions (pdf), i.e. functions in the set

PDF(Ω) :=

{
u ∈ L1(Ω)

∣∣∣∣ ∫
Ω
u(x) dx = 1, u ≥ 0

}
.

The set PDF(Ω) is a convex subset but it is not a subspace as differences of pdfs are
not necessarily pdfs. The (differential) entropy used in physics and information theory is
defined as the functional PDF(Ω)→ R with

u 7→ −
∫

Ω
u(x) log(u(x)) dx

and the convention 0 log(0) := 0. As PDF(Ω) is not a vector space, we extend it to the
whole L1(Ω) and define the negative entropy regularisation as

J(u) =

{∫
Ω u(x) log(u(x)) dx if u ∈ PDF(Ω)

∞ else
.

To summarise the introduction, variational regularisation aims at finding approxima-
tions to the solution of the inverse problem (1.1) by minimising appropriate functionals of
the form

Φα,f (u) :=
1

2
‖Ku− f‖2V + αJ(u) , (4.2)

where J : U → R ∪ {∞} represents a functional over the Banach space U , V is a Hilbert
space and K ∈ L(U ,V) a linear and continuous operator, and α > 0 is a real, positive
constant. The term D(u) := 1

2‖Ku − f‖2V is usually named fidelity or data term, as it
measures the deviation between the measured data f and the forward model Ku. The
functional J is the regularisation term or regulariser as it will impose certain regularity
conditions on the unknown u. The regularisation parameter will balance between both
terms. Next, we will study some general theory on variational methods that will tell
us under which conditions we can expect existence and uniqueness of solutions to those
minimisation problems.

4.1 Variational methods

4.1.1 Background

Banach spaces and weak convergence

To cover all the examples of the beginning of this chapter we have to extend our setting
to include Banach spaces. These are complete, normed vector spaces (as Hilbert spaces)
but they may not have an inner product. For every Banach space U , we can define the
space of linear and continuous functionals which is called the dual space U∗ of U , i.e.
U∗ := L(U ,R). Let u ∈ U and p ∈ U∗, then we usually write the dual product 〈p, u〉
instead of p(u). Obviously, the dual product is not symmetric (in contrast to the inner
product of Hilbert spaces). Moreover, for any K ∈ L(U ,V) there exists a unique operator
K∗ : V∗ → U∗, called the adjoint of K such that for all u ∈ U and p ∈ V∗ we have

〈K∗p, u〉 = 〈p,Ku〉 .
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It is easy to see that either side of the equation are well-defined, e.g. K∗p ∈ U∗ and u ∈ U .
As the dual space is a Banach space, it has a dual space as well which we will call the

bi-dual space of U and denote it with U∗∗ := (U∗)∗. As every u ∈ U defines a continuous
and linear mapping on the dual space U∗ by

〈E(u), p〉 := 〈p, u〉 ,

the mapping E : U → U∗∗ is well-defined. It can be shown that E is a linear and continuous
isometry (and thus injective). In the special case when E is surjective, we call U reflexiv.
Examples of reflexive Banach spaces include Hilbert spaces and Lq, `q spaces with 1 <
q < ∞. We call the space U separable if there exists a set X ⊂ U of at most countable
cardinality such that X = U .

A problem in infinite dimensional spaces is that bounded sequences may fail to have
convergent subsequences. An example is for instance in `2 the sequence {uk}k∈N ⊂ `2, ukj =

1 if k = j and 0 otherwise. It is easy to see that ‖uk‖`2 = 1 and that there is no u ∈ `2
such that uk → u. To circumvent this problem, we define a weaker topology on U . We say
that {uk}k∈N ⊂ U converges weakly to u ∈ U if and only if for all p ∈ U∗ the sequence of
real numbers {〈p, uk〉}k∈N converges and

〈p, uj〉 → 〈p, u〉 .

We will denote weak convergence by uk ⇀ u. On a dual space U∗ we could define another
topology (in addition to the strong topology induced by the norm and the weak topology
as the dual space is a Banach space as well). We say a sequence {pk}k∈N ⊂ U∗ converges
in weak-∗ to p ∈ U∗ if and only if

〈pk, u〉 → 〈p, u〉 for all u ∈ U

and we denote weak-∗ convergence by pk
∗→ p. Similarly, for any topology τ on U we

denote the convergence in that topology by uk τ→ u.
With these two new notions of convergence, we can solve the problem of bounded

sequences:

Theorem 4.1 (Sequential Banach-Alaoglu Theorem, e.g. [14, p. 70] or [15, p. 141]). Let
U be a separable normed vector space. Then every bounded sequence {uk}k∈N ⊂ U∗ has a
weak-∗ convergent subsequence.

Theorem 4.2 ([17, p. 64]). Each bounded sequence {uk}k∈N in a reflexive Banach space
U has a weakly convergent subsequence.

Infinity calculus

We will look at functionals E : U → R∞ whose range is modelled to be the extended real
line R∞ := R∪{+∞} where the symbol ∞ denotes an element that is not part of the real
line that is by definition larger than any other element of the reals, i.e.

x <∞

for all x ∈ R. This is useful to model constraints: For instance, if we were trying to minimise
E : [−1,∞)→ R, x 7→ x2 we could remodel this minimisation problem by Ẽ : R→ R∞

Ẽ(x) =

{
x2 if x ≥ −1

∞ else
.
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Obviously both functionals have the same minimiser but Ẽ is defined on a vector space
and not only on a subset. This has two important consequences: On the on hand, it makes
many theoretical arguments easier as we do not need to worry whether E(x+ y) is defined
or not. On the other hand, it makes practical implementations easier as we are dealing
with unconstrained optimisation instead of constrained optimisation. This comes at a cost
that some algorithms are not applicable any more, e.g. the function Ẽ is not differentiable
everywhere whereas E is (in the interior of its domain).

It is useful to note that one can calculate on the extended real line R∞ as we are used
to on the real line R but the operations with ∞ need yet to be defined. As ∞ is larger
than any other element it makes sense that it dominates any other calculation, i.e. for all
x ∈ R and λ > 0, we have

x+∞ :=∞+ x :=∞ λ · ∞ :=∞ · λ :=∞
x/∞ := 0 ∞+∞ :=∞ .

However, care needs to be taken as some calculations are not defined, e.g.

∞−∞ , 0 · ∞ and ∞ ·∞ .

.

Definition 4.1. Let U be a vector space and E : U → R∞ a functional. Then the effective
domain of E is

dom(E) := {u ∈ U | E(u) <∞} .

Convex calculus

A property of fundamental importance of sets and functions is convexity.

Definition 4.2. Let U be a vector space. A subset C ⊂ U is called convex, if λu+(1−λ)v ∈
C for all λ ∈ (0, 1) and all u, v ∈ C.

Figure 4.3: Example of a convex set (left) and non-convex set (right).

In analogy we can define convex functionals with the help of their epigraph which are
all points that lie “above” its graph.

Definition 4.3. The epigraph of a functional E : U → R∞ is defined as the set

epi(E) :=

{
(u, λ) ∈ U × R

∣∣∣∣E(u) ≤ λ
}
.
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∞
∅

Figure 4.4: Example of a convex function (left), a strictly convex function (middle) and a non-
convex function (right). Their epigraph are shaded in grey.

Definition 4.4. A functional E : U → R∞ is called convex if its epigraph is convex in
U × R.

It can be shown that this definition is equivalent to the following more common defini-
tion.

Definition 4.5. A functional E : U → R∞ is called convex, if

E(λu+ (1− λ)v) ≤ λE(u) + (1− λ)E(v)

for all λ ∈ (0, 1) and all u, v ∈ dom(E) with u 6= v. It is called strictly convex if the
inequality is strict.

Example 4.6. The absolute value function R → R, x 7→ |x| is convex but not strictly
convex while the quadratic function x 7→ x2 is strictly convex. For other examples, see
Figure 4.4.

Example 4.7. Let C ⊂ U be a set. Then the characteristic functional χC : U → R∞ with

χC(u) :=

{
0 u ∈ C
∞ u ∈ U \ C

(4.3)

is convex if and only if C is a convex set. To see the convexity, let u, v ∈ dom(χC) = C.
Then by the convexity of C the convex combination λu+ (1− λ)v is as well in C and both
the left and the right hand side of the desired inequality are zero.

Lemma 4.1. Let α ≥ 0 and E,F : U → R∞ be two convex functionals. Then E+αF : U →
R∞ is convex. Furthermore, if α > 0 and F strictly convex, then E+αF is strictly convex.

Proof. The proof shall be done as an exercise.

Definition 4.6. A functional E : U → R∞ is called subdifferentiable at u ∈ U , if there
exists an element p ∈ U∗ such that

E(v) ≥ E(u) + 〈p, v − u〉

holds, for all v ∈ U . Furthermore, we call p a subgradient at position u. The collection of
all subgradients at position u, i.e.

∂E(u) := {p ∈ U∗ | E(v) ≥ E(u) + 〈p, v − u〉 ,∀v ∈ U} ,

is called subdifferential of E at u.
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Figure 4.5: Visualisation of the subdifferential. Linear approximations of the functional have to
lie completely underneath the function. For points where the function is not differentiable there
may be more than one such approximation.

Remark 4.1. Let E : U → R∞ be a convex functional. Then the subdifferential is non-
empty at all u ∈ dom(E). If dom(E) 6= ∅, then for all u 6∈ dom(E) the subdifferential is
empty, i.e. ∂E(u) = ∅.

For non-differentiable functionals the subdifferential is multivalued; we want to consider
the subdifferential of the absolute value function as an illustrative example.

Example 4.8. Let E : R → R be the absolute value function E(u) = |u|. Then, the
subdifferential of E at u is given by

∂E(u) =


{1} for u > 0

[−1, 1] for u = 0

{−1} for u < 0

,

which you will prove as an exercise. A visual explanation is given in Figure 4.5.

It turns out that convex functions naturally define some distance measure that became
known as the Bregman distance.

Definition 4.7. Let E : U → R∞ be a functional. Moreover, let u, v ∈ U , E(v) < ∞ and
p ∈ ∂E(v). Then the (generalised) Bregman distance of E between u and v is defined as

Dp
E(u, v) := E(u)− E(v)− 〈p, u− v〉 . (4.4)

v u

Dp
E(u, v)E(u)

E
E(v) + 〈p, u− v〉

Figure 4.6: Visualization of the Bregman distance.

Remark 4.2. It is easy to check that a Bregman distance somewhat resembles a metric as
for all u, v ∈ U , p ∈ ∂E(v) there is Dp

E(u, v) ≥ 0 and Dp
E(v, v) = 0. There are functionals

where the Bregman distance (up to a square root) is actually a metric; e.g. E(u) := 1
2‖u‖2U

for Hilbert space U , then Dp
E(u, v) = 1

2‖u− v‖2U . However, there are functionals E where
Dp
E(u, v) = 0 does not imply u = v, as you will see on the example sheets.



CHAPTER 4. VARIATIONAL REGULARISATION 55

4.1.2 Minimisers

Definition 4.8. Let E : U → R∞ be a functional. We say that u∗ ∈ U solves the minimi-
sation problem

min
u∈U

E(u)

if and only if E(u∗) <∞ and E(u∗) ≤ E(u), for all u ∈ U . We call u∗ a minimiser of E.

We will now review two properties that are necessary for the well-definedness of a
minimisation problem.

Definition 4.9. A functional E is called proper if the effective domain dom(E) is not
empty.

Definition 4.10. A functional E : U → R∞ is called bounded from below if there exists
a constant C > −∞ such that for all u ∈ U we have E(u) ≥ C.

This condition is obviously necessary for the existence of the infimum infu∈U E(u).
Finally we characterise minimisers of functionals.

Theorem 4.3. An element u ∈ U is a minimiser of the functional E : U → R∞ if and
only if 0 ∈ ∂E(u).

Proof. By definition, 0 ∈ ∂E(u) if and only if for all v ∈ U it holds

E(v) ≥ E(u) + 〈0, v − u〉 = E(u) ,

which is by definition the case if and only if u is a minimiser of E.

4.1.3 Existence

If all minimising sequences (that converge to the infimum assuming it exists) are un-
bounded, then there cannot exist a minimiser. A sufficient condition to avoid such a
scenario is coercivity.

Definition 4.11. A functional E : U → R∞ is called coercive, if for all {uj}j∈N with
‖uj‖U →∞ we have E(uj)→∞.

x2

x

exp(x)

x

Figure 4.7: While the coercive function on the left has a minimiser, it is easy to see that the
non-coercive function on the right does not have a minimiser.

Remark 4.3. Coercivity is equivalent to its negated statement which is “if the function
values {E(uj)}j∈N ⊂ R are bounded, so is the sequence {uj}j∈N ⊂ U”.

Although coercivity is not strictly speaking necessary, it is sufficient that all minimising
sequences are bounded.
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Figure 4.8: Visualisation of lower semi-continuity. The solid dot at a jump indicates the value
that the function takes. The function on the left is continuous and thus lower semi-continuous.
The functions in the middle and on the right are discontinuous. While the function in the middle
is lower semi-continuous, the function on the right is not (due to the limit from the left at the
discontinuity).

Lemma 4.2. Let E : U → R∞ be a proper, coercive functional and bounded from below.
Then the infimum infu∈U E(u) exists in R, there are minimising sequences, i.e. {uj}j∈N ⊂
U with E(uj)→ infu∈U E(u), and all minimising sequences are bounded.

Proof. As E is proper and bounded from below, there exists a C1 > 0 such that we
have −∞ < −C1 < infuE(u) < ∞ which also guarantees the existence of a minimising
sequence. Let {uj}j∈N be any minimising sequence, i.e. E(uj) → infuE(u). Then there
exists a j0 ∈ N such that for all j > j0 we have

E(uj) ≤ inf
u
E(u) + 1︸ ︷︷ ︸
=:C2

<∞ .

With C := max{C1, C2} we have that |E(uj)| < C for all j > j0 and thus from the
coercivity it follows that {uj}j>j0 is bounded, see Remark 4.3. Including a finite number
of elements does not change its boundedness which proves the assertion.

More importantly we are going to need that functionals are sequentially lower semi-
continuous. Roughly speaking this means that the functional values for arguments near an
argument u are either close to E(u) or greater than E(u).

Definition 4.12. Let U be a Banach space with topology τU . The functional E : U → R∞
is said to be sequentially lower semi-continuous with respect to τU (τU -l.s.c.) at u ∈ U if

E(u) ≤ lim inf
j→∞

E(uj)

for all sequences {uj}j∈N ⊂ U with uj → u in the topology τU of U .

Remark 4.4. For topologies that are not induced by a metric we have to differ between a
topological property and its sequential version, e.g. continuous and sequentially continuous.
If the topology is induced by a metric, then these two are the same. However, for instance
the weak and weak-∗ topology are generally not induced by a metric.

Example 4.9. The functional ‖ · ‖1 : `2 → R∞ with

‖u‖1 =

{∑∞
j=1 |uj | if u ∈ `1

∞ else

is lower semi-continuous with respect to `2.
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Proof. Let {uj}j∈N ⊂ `2 be a convergent sequence with uj → u ∈ `2. As strong convergence
implies weak convergence, we have with δk : `2 → R, 〈δk, v〉 = vk that for all k ∈ N that

ujk = 〈δk, uj〉 → 〈δk, u〉 = uk .

The assertion follows then with Fatou’s lemma

‖u‖1 =

∞∑
k=1

|uk| =
∞∑
k=1

lim
j→∞

|ujk| ≤ lim inf
j→∞

∞∑
k=1

|ujk| = lim inf
j→∞

‖uj‖1 .

Note that it is not clear whether both the left and the right hand side are finite.

Example 4.10. Let Ω ⊂ Rn be open and bounded. Then, the total variation is lower
semi-continuous with respect to L1.

Proof. Recall that the total variation was defined by means of the test functions

D(Ω,Rn) :=
{
ϕ ∈ C∞0 (Ω;Rn)

∣∣∣ sup
x∈Ω
‖ϕ(x)‖2 ≤ 1

}
as

TV(u) = sup
ϕ∈D(Ω,Rn)

∫
Ω
u(x) divϕ(x) dx .

Let {uj}j∈N ⊂ BV(Ω) be a sequence converging in L1(Ω) with uj → u in L1(Ω). Then for
any test function ϕ ∈ D(Ω,Rn) there is∫

Ω
[u(x)− uj(x)] divϕ(x)dx ≤

∫
Ω
|u(x)− uj(x)|dx︸ ︷︷ ︸
=‖u−uj‖L1→0

sup
x∈Ω
|divϕ(x)|︸ ︷︷ ︸
<∞

→ 0

and thus ∫
Ω
u(x) divϕ(x)dx = lim inf

j→∞

∫
Ω
uj(x) divϕ(x)dx ≤ lim inf

j→∞
TV(uj) .

Taking the supremum over all test functions shows the assertion. Note that again the left
and right hand side may not be finite.

We have now all ingredients in place for a positive answer about the existence of min-
imisers also known as the “direct method” or “fundamental theorem of optimisation”.

Theorem 4.4 (“Direct method”, David Hilbert, around 1900). Let U be a Banach space
and τU a topology (not necessarily the one induced by the norm) on U such that bounded
sequences have τU -convergent subsequences. Let E : U → R∞ be proper, bounded from
below, coercive and τU -l.s.c. Then E has a minimiser.

Proof. From Lemma 4.2 we know that infu∈U E(u) is finite, minimising sequences exist
and that they are bounded. Let {uj}j∈N ∈ U be a minimising sequence. Thus, from
the assumption on the topology τU there exists a subsequence {ujk}k∈N and u∗ ∈ U with
ujk

τU→ u∗ for k →∞. From the sequential lower semi-continuity of E we obtain

E(u∗) ≤ lim inf
k→∞

E(ujk) = lim
j→∞

E(uj) = inf
u∈U

E(u) <∞ ,

which shows that E(u∗) <∞ and E(u∗) ≤ E(u) for all u ∈ U ; thus u∗ minimises E.



58 4.1. VARIATIONAL METHODS

The above theorem is very general but its conditions are hard to verify but the situation
is a easier in reflexive Banach spaces (thus also in Hilbert spaces).

Corollary 4.1. Let U be a reflexive Banach space and E : U → R∞ be a functional which
is proper, bounded from below, coercive and l.s.c. with respect to the weak topology. Then
there exists a minimiser of E.

Proof. The statement follows from the direct method, Theorem 4.4, as in reflexive Banach
spaces bounded sequences have weakly convergent subsequences, see Theorem 4.2.

Remark 4.5. For convex functionals on reflexive Banach spaces, the situation is even
easier. It can be shown that a convex function is l.s.c. with respect to the weak topology
if and only if it is l.s.c. with respect to the strong topology (see e.g. [7, Corollary 2.2., p.
11] or [3, p. 149] for Hilbert spaces).

Remark 4.6. It is easy to see that the key ingredient for the existence of minimisers is that
bounded sequences have a convergent subsequence which is difficult to prove in practical
situations. Another option is to change the space and consider a space in which U is
compactly embedded in, i.e. the mapping U → V, u 7→ u is compact. Then (by definition)
every bounded sequence in U has a convergent subsequence in V.

4.1.4 Uniqueness

Theorem 4.5. Assume that the functional E : U → R∞ has at least one minimiser and is
strictly convex. Then the minimiser is unique.

Proof. Let u, v be two minimisers of E and assume that they are different, i.e. u 6= v.
Then it follows from the minimising properties of u and v as well as the strict convexity of
E that

E(u) ≤ E(1
2u+ 1

2v) <
1

2
E(u) +

1

2
E(v)︸ ︷︷ ︸
≤E(u)

≤ E(u)

which is a contradiction. Thus, u = v and the assertion is proven.

Example 4.11. Convex (but not strictly convex) functions may have have more than one
minimiser, examples include constant and trapezoidal functions, see Figure 4.9. On the
other hand, convex (and even non-convex) functions may have a unique minimiser, see
Figure 4.9.

a) b)

Figure 4.9: a) Convex functions may not have a unique minimiser. b) Neither strict convexity
nor convexity is necessary for the uniqueness of a minimiser.
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4.2 Well-posedness and regularisation properties

The aim of this section is to have a detailed look at the model Rα : V → U with

Rαf := arg min
u∈U

{
Φα,f (u) :=

1

2
‖Ku− f‖2V + αJ(u)

}
. (4.5)

We will establish conditions on the spaces U ,V, the functional J and the operator K under
which a minimiser exists and is unique and therefore the mapping Rα is well-defined.
We will analyse the continuity of the mapping Rα which means that the solution depends
continuous on the data and thus can handle small variations due to noise. We also show that
there are parameter choice rules that make Rα a convergent regularisation in a modified
sense (that we will define later) and prove convergence rates under a source condition.

4.2.1 Existence and uniqueness

Existence

Lemma 4.3. Let U be a Banach space and τU a topology on it. Let E : U → R and
F : U → R∞ be proper functionals that are both τU -l.s.c. and bounded from below. Then
E + F : U → R∞ is proper, τU -l.s.c. and bounded from below.

Proof. First of all, as F is proper, there exists u ∈ U such that F (u) <∞ and as E(u) <∞
it is clear that (E + F )(u) <∞ which shows that E + F is proper.

Second, for all u ∈ U we have from the boundedness from below of E and F that
E(u) ≥ C1 and F (u) ≥ C2 and thus,

(E + F )(u) = E(u) + F (u) ≥ C1 + C2 > −∞ .

Finally, let {uj}j∈N ⊂ U be a sequence and u ∈ U with uj → u in τU . Then by τU -l.s.c.
we have that

(E + F )(u) ≤ lim inf
j→∞

E(uj) + lim inf
j→∞

F (uj)

≤ lim inf
j→∞

(E(uj) + F (uj)) = lim inf
j→∞

(E + F )(uj)

which shows that E + F is τU -l.s.c. and all assertions are proven.

Lemma 4.4. Let U be a Banach space and E,F : U → R∞ be functionals. Let E be
coercive and F be bounded from below, then E + F is coercive.

Proof. From the boundedness from below of F , there exists a constant C ∈ R such that
F (u) > C for all u ∈ U . Thus we see that

(E + F )(u) = E(u) + F (u) ≥ E(u) + C →∞
as ‖u‖U →∞ which proves that E + F is coercive.

In many situations of interest, the lemma above does not apply because the coercivity
comes jointly from the data term and the prior as we will see in the following example.

Example 4.12. Let Ω ⊂ Rn be bounded and consider total variation regularisation, i.e.
J = TV and U = BV(Ω). One can easily see that constant functions have zero total
variation, i.e. TV(u) = 0, for all u ≡ c, c ∈ R. Notice that this implies that J is not
coercive on the whole space U as uj(x) = j/|Ω|, |Ω| :=

∫
Ω 1 dx defines a sequence such that

‖uj‖L1 = j and TV(uj) = 0. However, we can make use of a Poincaré–Wirtinger inequality
for BV.
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Proposition 4.1 ([8, p. 24]). Let Ω ⊂ Rn be a Lipschitz domain (non-empty, open,
connected and bounded with Lipschitz boundary). There exists a constant C > 0 such that
for all u ∈ BV(Ω) the Poincaré–Wirtinger type inequality is satisfied

‖u− uΩ‖L1 ≤ C TV(u)

where uΩ := 1
|Ω|
∫

Ω u(x)dx is the mean-value of u over Ω.

Continuation of Example 4.12. Let Ω now fulfil the conditions of Proposition 4.1.
Furthermore, let p0 ∈ U∗ with

〈p0, u〉 := uΩ =
1

|Ω|

∫
Ω
u(x)dx

and denote the space of zero-mean functions by U0 := {u ∈ U |u ∈ N (p0)}. By the
Poincaré–Wirtinger inequality it is clear that the total variation is coercive on U0 and the
data term has to make sure that the functional Φα,f is coercive on the whole space U .
As we will see in the next, Lemma 4.5, the condition 1 6∈ N (K) is sufficient to guarantee
coercivity in this scenario. This will follow from a more general result.

Lemma 4.5. Let U ,V be Banach spaces, K ∈ L(U ,V), J : U → [0,∞] and f ∈ V. Let
p0 ∈ U∗, u0 ∈ U , 〈p0, u0〉 = 1,

U0 := {u ∈ U | u ∈ N (p0)}

so that u0 6∈ N (K) and J is coercive on U0 in the sense that

‖u− 〈p0, u〉u0‖U →∞ implies J(u)→∞ .

Then the variational regularisation functional Φα,f defined by (4.5) is coercive.

Proof. Any u ∈ U can be decomposed into

u = v + w

where v := u− 〈p0, u〉u0 ∈ U0 and w := 〈p0, u〉u0 ∈ span(u0).
Now, let {uj}j∈N ⊂ U be a sequence with ‖uj‖U →∞. On the one hand, if ‖vj‖U →∞,

then by the coercivity of J on U0 and the boundedness from below of the data term, we
have that Φα,f (uj)→∞.

On the other hand, if ‖vj‖U < C for some C > 0, then from

‖uj‖U ≤ ‖vj‖U + ‖wj‖U < C + |〈p0, u
j〉|‖u0‖U

it follows that |〈p0, u
j〉| → ∞. Therefore,

‖Kuj − f‖V = ‖K(vj + wj)− f‖V
≥ ‖Kwj‖V − ‖Kvj − f‖V
≥ ‖Ku0‖V︸ ︷︷ ︸

>0

|〈p0, u
j〉|︸ ︷︷ ︸

→∞

−‖K‖C − ‖f‖V︸ ︷︷ ︸
constant

→∞

and thus Φα,f (uj)→∞ as the regularisation functional J is bounded from below.



CHAPTER 4. VARIATIONAL REGULARISATION 61

Remark 4.7. A natural question here is whether the coercivity can also come completely
from the data term D(u) = 1

2‖Ku− f‖2V . On the one hand if K is not injective, then the
kernel is non-trivial, thus we cannot expect the data term to be coercive.

On the other hand, even if K was injective we cannot expect coercivity in general.
Assume that the data term D was coercive, U a Hilbert space, the topologies τU , τV the
weak topologies on U ,V, f ∈ R(K) \ R(K) and D τU -l.s.c. (e.g. see Lemma 4.6). Then
we can apply the direct method on the data term D and would prove the existence of a
minimiser. This is by definition a least squares solution; a contradiction to Lemma 2.2.

The remark will be illustrated by the following example.

Example 4.13. Let us consider the Example 2.1 again where the operator was K : `2 →
`2, (Ku)j := uj/j and the data f ∈ `2 with fj := 1/j. Then the {uk}k∈N ⊂ `2 with

ukj :=

{
1 j ≤ k
0 else

defines a sequence {Kuk}k∈N with Kuk → f in `2.
Note that K is injective and {uk}k∈N is a minimising sequence of the data term, i.e.

‖Kuk − f‖`2 → 0. However, as ‖uk‖`2 = k the sequence {uk}k∈N is unbounded and thus
u 7→ ‖Ku− f‖`2 cannot be coercive.

Lemma 4.6. Let U and V be Banach spaces with topologies τU and τV . Moreover, let the
norm on V be τV-l.s.c., the operator K : U → V be sequentially continuous with respect to
the topologies τU and τV and let {fj}j∈N ⊂ V be convergent in τV with fj → f ∈ V. Then
for any τU -convergent sequence {uj}j∈N ⊂ U with uj → u ∈ U with respect to τU , we have

1

2
‖Ku− f‖2V ≤ lim inf

j→∞

1

2
‖Kuj − fj‖2V .

In particular, if fj ≡ f , then D : U → R, u 7→ 1
2‖Ku− f‖2V is τU -l.s.c.

Proof. Let {uj}j∈N be a τU -convergent sequence and denote its limit by u ∈ U , i.e. uj → u
in τU . Because K is continuous with respect to τU and τV we have that Kuj → Ku in τV
and thus Kuj − fj → Ku − f in τV . Thus, the assertion follows from the τV -l.s.c. of the
norm.

Remark 4.8. If the topologies τU and τV are the weak topologies, then the situation is
much simpler as continuity in the strong topologies implies continuity in the weak topologies
[5, chapter IV.3]. Thus the assumptions of Lemma 4.6 are met if K is continuous.

Note that the norm is convex (will be proven in what follows) such that weak-l.s.c. is
equivalent to l.s.c.

Now we are in a position to state sufficient assumptions for the existence of minimisers.

Assumption 4.1. Sufficient assumptions for the existence of minimisers of Φα,f are:

(a) The Banach space U and Hilbert space V are associated with the topologies τU and
τV . The pair (U , τU ) has the property that bounded sequences have τU -convergent
subsequences. Moreover, the norm on V is τV-l.s.c.

(b) The operator K : U → V is linear and sequentially continuous with respect to the
topologies τU and τV .
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(c) The functional J : U → [0,∞] is proper and τU -l.s.c.

(d) Either J is coercive or the pair (K,J) fulfil the assumptions of Lemma 4.5.

Theorem 4.6. Let the Assumptions 4.1 hold and let f ∈ V, α > 0. Then the variational
regularisation functional Φα,f defined by (4.5) has a minimiser.

Proof. It follows from the assumptions by Lemmata 4.3 and 4.6 that Φα,f is proper, τU -l.s.c.
and bounded from below. Moreover, from Lemmata 4.4 or 4.5 (depending on assumption
4.1 (d)) Φα,f is coercive. Then from the direct method, Theorem 4.4, it follows that there
exists a minimiser.

Uniqueness

Lemma 4.7. Let U be a Banach space and and V a Hilbert space. Furthermore, let K ∈
L(U ,V), f ∈ V and D : U → R∞ be defined as D(u) := 1

2‖Ku − f‖2V . Then D is convex.
Furthermore, D is strictly convex if and only if K is injective.

Proof. Let λ ∈ (0, 1) and u, v ∈ U with u 6= v.
Long and straightforward calculations (good exercise) yield

D(λu+ (1− λ)v) = λD(u) + (1− λ)D(v)− λ(1− λ)

2
‖K(u− v)‖2V︸ ︷︷ ︸
≥0

,

which shows that D is convex.
Note that ‖K(u − v)‖V > 0 if K is injective and u 6= v. On the other hand, if K

is not injective, then we can find u, v ∈ U with u 6= v so that u − v ∈ N (K) and thus
‖K(u− v)‖V = 0 which shows that D is not strictly convex.

Remark 4.9. The lemma is in general not true if V is a Banach space. As an example,
consider K = I, f = 0, V = R2 with ‖ · ‖1 as a norm. Then D is not strictly convex.

Example 4.14. Let U be continuously embedded into the Hilbert space Z (in symbols
U ↪→ Z), i.e. there exists a constant C > 0 such that for all u ∈ U there is ‖u‖Z ≤ C‖u‖U .
Furthermore, let β > 0 and J be convex. Then the functional Φα,f + β

2 ‖ · ‖2Z is always
strictly convex independent of K.

Consider the product space V × Z which is a Hilbert space with the inner product

〈(v1, z1), (v2, z2)〉V×Z := 〈v1, v2〉V + 〈z1, z2〉Z .

Then we can rewrite 1
2‖Ku− f‖2V + β

2 ‖u‖2Z as

1

2

∥∥∥∥( K√
βI

)
u−

(
f
0

)∥∥∥∥2

V×Z
=

1

2
‖K̃u− f̃‖2V

where the modified operator K̃ is injective. Therefore, adding the term β
2 ‖u‖2Z can be seen

as a regularisation of the linear operator K directly.

Theorem 4.7. Let the Assumptions 4.1 hold and let J be convex. Moreover, let either
K be injective or J be strictly convex. Then for any f ∈ V and α > 0 the variational
regularisation model Rα is well-defined (there exists a unique minimiser of the functional
Φα,f defined by (4.5)).
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Proof. Existence follows immediately from Theorem 4.6. For the uniqueness, notice that
both 1

2‖Ku− f‖2V and αJ are convex and either of them is strictly convex by assumption,
see Lemma 4.7. Thus by Lemma 4.1 the whole functional Φα,f is strictly convex and
therefore the minimiser is unique, see Theorem 4.5.

Example 4.15. Let α, β > 0,K ∈ L(`2, `2) and consider the elastic net variational regu-
larisation model 1

2‖Ku− f‖2`2 + αJ(u) with

J(u) =

{
‖u‖1 + β

2 ‖u‖22 if u ∈ `1
∞ else

.

We check the assumptions of Theorem 4.7 in this setting to conclude that Rα is well-defined.
Let U ,V = `2 and as these are Hilbert spaces we choose the topologies τU , τV to be

both the weak topology on `2. By Remark 4.8 the Assumptions 4.1 (a) and (b) are fulfilled
and we can show lower semi-continuity in the strong topology rather than the weak one.
It is easy to see that the prior J is strictly convex, proper and coercive. It remains to show
that J is lower semi-continuous with respect to `2. The squared `2-norm is continuous,
thus lower semi-continuous and the lower semi-continuity of the `1-norm has been proven
in Example 4.9 such that the elastic net is lower semi-continuous by Lemma 4.3. As it is
convex, l.s.c. is equivalent to weak-l.s.c. and all assumptions of Theorem 4.7 hold.

For the example of the total variation we need to have some knowledge about compact
embeddings of BV(Ω).

Theorem 4.8 (Rellich-Kandrachov, [1, p. 168]). Let Ω ⊂ Rn be a Lipschitz domain and
either

n > mp and p∗ := np/(n−mp)
or n ≤ mp and p∗ :=∞ .

Then the embedding Hm,p(Ω) → Lq(Ω) is continuous if 1 ≤ q ≤ p∗ and compact if in
addition q < p∗.

Due to approximations of u ∈ BV(Ω) by smooth functions the Rellich-Kandrachov
Theorem (for m = 1, p = 1) gives us compactness for BV(Ω).

Corollary 4.2 ([8, p. 17]). For any Lipschitz domain Ω ⊂ Rn the embedding

BV(Ω)→ L1(Ω)

is compact.

Example 4.16. Let Ω ⊂ Rn be a Lipschitz domain, α > 0,K ∈ L(L1(Ω), L2(Ω)) be
injective and consider the total variation regularised model Rα : L2(Ω) → BV(Ω), Rαf :=
arg minu∈BV(Ω) Φα,f (u) with

Φα,f (u) =
1

2
‖Ku− f‖2L2 + αTV(u) .

This time we are neither in a Hilbert nor in a reflexive Banach space setting but from
Corollary 4.2 we see that BV(Ω) is compactly embedded in L1(Ω). Thus every sequence
bounded in BV(Ω) has a convergent subsequence in L1(Ω).

Let τU and τV be the topologies induced by the L1-norm, respectively L2-norm. It is
clear that the assumptions on the spaces and topologies are met. The lower semi-continuity
of TV with respect to L1 was shown in Example 4.10. Moreover, it can be shown that TV
is proper and convex. The injectivity of K implies that 1 6∈ N (K). From Example 4.12
and 1 6∈ N (K) it follows that Φα,f is coercive. Thus, a minimiser exists. The injectivity of
the operator K guarantees strict convexity and therefore the uniqueness of the minimiser.
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4.2.2 Continuity

We have seen that under some assumptions the variational regularisation Rα is well-defined
(solutions exists and are unique). In this section we show that variational regularisation
is continuous with respect to the data, i.e. small variations in the data do not lead to
arbitrary large distortions in the solution. To establish the main result we have to prove
auxiliary lemmata.

Lemma 4.8. Let V be a normed space. For all f, g ∈ V there is

‖f + g‖2V ≤ 2‖f‖2V + 2‖g‖2V .

Proof. For any f, g ∈ V we have with the monotonicity of [0,∞)→ [0,∞), x 7→ x2 that

‖f + g‖2V ≤
(
‖f‖V + ‖g‖V

)2

= ‖f‖2V + 2‖f‖V‖g‖V + ‖g‖2V .

We complete the proof with the observation that 2ab ≤ a2 + b2 for all a, b ∈ R.

Lemma 4.9. Let U ,V be normed spaces. For all u ∈ U and f, g ∈ V there is

Φα,f (u) ≤ 2Φα,g(u) + ‖f − g‖2V .

Proof. Using Lemma 4.8 and J(u) ≥ 0, we have

Φα,f (u) =
1

2
‖Ku− f‖2V + αJ(u) =

1

2
‖Ku− g + (g − f)‖2V + αJ(u)

≤ ‖Ku− g‖2V + ‖g − f‖2V + 2αJ(u)

= 2

(
1

2
‖Ku− g‖2U + αJ(u)

)
+ ‖f − g‖2V

= 2Φα,g(u) + ‖f − g‖2V .

Theorem 4.9 (Continuity). Assume the setting of Theorem 4.7 that guarantees the ex-
istence and uniqueness of minimisers of Φα,f (u) := 1

2‖Ku − f‖2V + αJ(u) for any f ∈ V
and α > 0. Moreover, let the topology τV on V be weaker than the norm topology in the
sense that convergence in norm implies convergence in τV . Then, the mapping Rα : V →
U , Rαf := arg minu∈U Φα,f (u) is sequentially strong-τU continuous, i.e. for all sequences
{fj}j∈N ⊂ V with fj → f we have

Rαfj → Rαf in τU .

Moreover, the function values of the regulariser converge, i.e. J(Rαfj)→ J(Rαf).

Proof. Let {fj}j∈N ⊂ V be a convergent sequence with fj → f and let uj := Rαfj be the
minimiser of Φα,fj .

We first show that {Φα,f (uj)}j∈N ⊂ R is bounded. To see this, as J is proper, there
exists ũ ∈ U such that J(ũ) < ∞ and we denote C := 2‖Kũ‖2V + 2αJ(ũ). With Lemma
and 4.9 and the minimising property of uj we have that

Φα,f (uj) ≤ 2Φα,fj (uj) + ‖f − fj‖2V
≤ 2Φα,fj (ũ) + ‖f − fj‖2V = ‖Kũ− fj‖2V + 2αJ(ũ) + ‖f − fj‖2V
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With Lemma 4.8 we can further estimate

‖Kũ− fj‖2V + 2αJ(ũ) + ‖f − fj‖2V ≤ 2‖Kũ‖2V + 2‖fj‖2V + 2αJ(ũ) + ‖f − fj‖2V
≤ 2‖fj‖2V + ‖f − fj‖2V + C .

As fj converges to f , there exists a j0 ∈ N such that for all j > j0 there is

Φα,f (uj) ≤ 2 ‖fj‖2V︸ ︷︷ ︸
‖f‖2V+1

+ ‖f − fj‖2V︸ ︷︷ ︸
≤1

+C ≤ 2‖f‖2V + C + 3 <∞ .

By the coercivity of Φα,f we know that the sequence {uj}j∈N ⊂ U is bounded, see Remark
4.3. Thus there exist τU -convergent subsequences and let {ujk}k∈N ⊂ U be any one of
those. We denote its limit by u∗ ∈ U , i.e. ujk → u∗ in τU .

From Lemma 4.6 and as J is τU -l.s.c. we have that

1

2
‖Ku∗ − f‖2V ≤ lim inf

k→∞

1

2
‖Kujk − fjk‖2V and J(u∗) ≤ lim inf

k→∞
J(ujk) (4.6)

and therefore

Φα,f (u∗) =
1

2
‖Ku∗ − f‖2V + αJ(u∗)

≤ lim inf
k→∞

1

2
‖Kujk − fjk‖2V + α lim inf

k→∞
J(ujk)

≤ lim inf
k→∞

(
1

2
‖Kujk − fjk‖2V + αJ(ujk)

)
= lim inf

k→∞
Φα,fjk

(ujk) .

With the minimising property of ujk we arrive at

Φα,f (u∗) ≤ lim inf
k→∞

Φα,fjk
(ujk)

≤ lim inf
k→∞

Φα,fjk
(u) = lim

k→∞
Φα,fjk

(u) = Φα,f (u)
(4.7)

for all u ∈ U . In particular, this holds for u = Rαf . Thus, as the minimiser of Φα,f

is unique, we have that u∗ = Rαf . Repeating the same arguments as above for any
subsequence of {uj}j∈N instead of {uj}j∈N, we see that every subsequence has a convergent
subsequence that converges to Rαf in τU . Thus, {uj}j∈N is convergent in τU and we have
uj → Rαf in τU and the first assertion is proven.

Moreover, from (4.7) it follows with uj → Rαf in τU that

lim
j→∞

Φα,fj (uj) = Φα,f (Rαf) .

and therefore

lim sup
j→∞

αJ(uj) = lim sup
j→∞

(
1

2
‖Kuj − fj‖2V + αJ(uj)−

1

2
‖Kuj − fj‖2V

)
≤ lim sup

j→∞

(
1

2
‖Kuj − fj‖2V + αJ(uj)

)
︸ ︷︷ ︸

=limj→∞ Φα,fj (uj)=Φα,f (Rαf)

+ lim sup
j→∞

(
−1

2
‖Kuj − fj‖2V

)

=
1

2
‖KRαf − f‖2V + αJ(Rαf)− lim inf

j→∞

1

2
‖Kuj − fj‖2V︸ ︷︷ ︸

≤− 1
2
‖KRαf−f‖2V by (4.6)

≤ αJ(Rαf) .
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The τU -l.s.c. of J proves the second assertion

lim sup
j→∞

αJ(uj) ≤ αJ(Rαf) ≤ lim inf
j→∞

αJ(uj) .

Remark 4.10. In the theorem above we could only prove convergence in τU . If J statisfies
the Radon-Riesz property with respect to the topology τU , i.e. uj → u in τU and J(uj)→
J(u) imply ‖uj − u‖U → 0, then the convergence is in the norm topology. An example of
a functional satisfying the Radon-Riesz property is ‖ · ‖pLp / ‖ · ‖p`p with 1 < p < ∞ if the
underlying space is Lp / `p and τU being the weak topology.

4.2.3 Convergent regularisation

Note that variational regularisation for general J is not necessarily a regularisation in the
sense of Definition 3.1, as we cannot expect Rαf = arg minu∈U Φα,f (u) → u† for α → 0
where u† is the minimal norm solution. However, we can generalise Definition 2.1 of a
minimal norm solution (and a least squares solution) to justify calling Rα a regularisation.

Definition 4.13. Let U and V be normed spaces and f ∈ V. We call u ∈ U a least squares
solution of the inverse problem (1.1), if

u ∈ arg min
v∈U
‖Kv − f‖V (4.8)

As in the case of Hilbert spaces, we denote by L the set of all least squares solutions (it
might be empty). Furthermore, we call u† ∈ U a J-minimising solution of the inverse
problem (1.1), if

u† ∈ arg min
u∈L

J(u) . (4.9)

Remark 4.11. If V is a Hilbert space (as in our setting in Assumption 4.1), then most
of the statements from Chapter 2 about least squares solutions still hold. In particular
Lemma 2.2, which states that L 6= ∅ if and only if f ∈ R(K) ⊕ R(K)⊥. However, the
minimal norm solution (J-minimising solution for J = ‖ ·‖U ) may not be unique any more.

Lemma 4.10. Let U be a vector space and E : U → R∞ a convex functional. Then the set
of all minimisers S, i.e.

S := arg min
u∈U

E(u) ,

is convex.

Proof. For any u, v ∈ S, u 6= v and λ ∈ (0, 1), it is easy to see that

E(λu+ (1− λ)v) ≤ λE(u) + (1− λ)E(v)

≤ λ inf
w∈U

E(w) + (1− λ) inf
w∈U

E(w) = inf
w∈U

E(w)

which shows that λu+ (1− λ)v ∈ S and thus S is convex.

Corollary 4.3. Let U and V be normed spaces, f ∈ V and K : U → V be linear. Then the
set of least squares solutions L is convex.

Proof. One can show that u 7→ ‖Ku− f‖V is convex so that the lemma applies.
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Lemma 4.11. Let U be a Banach space, V be a Hilbert space, f ∈ V and K : U → V be
linear and injective. Then the set of least squares solutions L is at most a singleton.

Proof. Assume that least squares solutions exist which are equivalently characterised by

u ∈ arg min
v∈U

{
D(v) :=

1

2
‖Kv − f‖2V

}
. (4.10)

From Lemma 4.7 we know that D is strictly convex and thus by Theorem 4.5 the minimiser
is unique.

Proposition 4.2. Let the assumptions of Theorem 4.7 hold and f ∈ R(K) ⊕ R(K)⊥.
Then a J-minimising solution exists and is unique.

Proof. By Remark 4.11, the condition f ∈ R(K)⊕R(K)⊥ guarantees the existence of least
squares solutions, i.e. L 6= ∅. For the existence of J-minimising solutions via the direct
method, Theorem 4.4, we see that only the coercivity on L may not be guaranteed by the
assumptions.

If J is coercive, then it is obviously also coercive on L. If J is only coercive on U0 (see
Lemma 4.5 for a definition), then a similar calculation as in the proof of Lemma 4.5 shows
that for any sequence {uj}j∈N ⊂ L we have with

uj = uj − 〈p0, u
j〉u0︸ ︷︷ ︸

=:vj

+ 〈p0, u
j〉u0︸ ︷︷ ︸

=:wj

that

‖f‖V = ‖K0− f‖V ≥ ‖Kuj − f‖V
= ‖K(vj + wj)− f‖V
≥ ‖Kwj‖V − ‖f −Kvj‖V > ‖Ku0‖V |〈p0, u

j〉| − ‖f‖V − ‖K‖‖vj‖V .

Let {uj}j∈N ⊂ L with ‖uj‖U → ∞. If ‖vj‖V was bounded, then so would be |〈p0, u
j〉|

which contradicts the unboundedness of {uj}j∈N. Thus

‖vj‖U = ‖uj − 〈p0, u
j〉‖U →∞

and J(uj)→∞ by the coercivity of J on U0.
For the uniqueness, either J is strictly convex (and thus a minimiser is unique) or K

is injective and only one least squares solution exists.

Definition 4.14 (Regularisation). Let U ,V be Banach spaces, τU a topology on U , f ∈ V
and K ∈ L(U ,V). Moreover, let u† be the J-minimising solution (assuming it exists and
is unique). We call the family of operators {Rα}α>0, Rα : V → U a regularisation (with
respect to τU) of the inverse problem (1.1), if Rα is sequentially strong-τU continuous for
all α > 0 and

Rαf → u† in τU as α→ 0.

Theorem 4.10. Let the assumptions of Theorem 4.7 hold and assume (for simplicity) that
the clean data is in the range, i.e. f ∈ R(K), thus the J-minimising solution u† exists and
is unique. Moreover, assume that the topology τV is weaker than the norm topology on V.
Let α : (0,∞)→ (0,∞) be a parameter choice rule with

α(δ)→ 0, and
δ2

α(δ)
→ 0 as δ → 0 .
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Let {δj}j∈N ⊂ [0,∞) be a sequence of noise levels with δj → 0 and {fj}j∈N ⊂ V be a
sequence of noisy observations with ‖f − fj‖V ≤ δj. Set αj := α(δj) and let {uj}j∈N be the
sequence of minimisers of Φαj ,fj , i.e. uj := Rαjfj.

Then uj → u† in τU and J(uj)→ J(u†). In particular, Rα is a regularisation.

Proof. From minimising property of uj and Ku† = f , it follows that

0 ≤ 1

2
‖Kuj − fj‖2V + αjJ(uj)

≤ 1

2
‖Ku† − fj‖2V + αjJ(u†)

=
1

2
‖f − fj‖2V + αjJ(u†) ≤

δ2
j

2
+ αjJ(u†)→ 0

(4.11)

as j →∞ (δj , αj → 0). In particular limj→∞ ‖Kuj − fj‖V = 0, and then

‖Kuj − f‖V ≤ ‖Kuj − fj‖V + ‖fj − f‖V ≤ ‖Kuj − fj‖V + δj → 0 . (4.12)

Similarly, we see from (4.11) that

lim sup
j→∞

J(uj) ≤ lim sup
j→∞

δ2
j

2αj
+ J(u†) = J(u†) . (4.13)

Let α+ := maxj∈N αj be the largest regularisation parameter (which exists as αj → 0),
then

lim sup
j→∞

Φα+,f (uj) = lim sup
j→∞

(
1

2
‖Kuj − f‖2V + α+J(uj)

)
≤ lim sup

j→∞

1

2
‖Kuj − f‖2V︸ ︷︷ ︸
=0

+ lim sup
j→∞

α+J(uj)︸ ︷︷ ︸
≤α+J(u†)

≤ α+J(u†) =: C <∞

This shows that there exists a j0 ∈ N such that for all j ≥ j0 we have that Φα+,f (uj) ≤ C+1.
From the coercivity of Φα+,f it follows that {uj}j∈N is bounded and therefore has a

τU -convergent subsequence {ujk}k∈N with ujk → û in τU . By the continuity of K with
respect to τU and τV we have that Kujk → Kû in τV . With the τV -l.s.c. of the norm of V
we conclude that Kû = f as

‖Kû− f‖V ≤ lim inf
k→∞

‖Kujk − f‖V = 0 .

Thus û is a least squares solution.
From (4.13) and the τU -l.s.c. of J we have that

J(û) ≤ lim inf
k→∞

J(ujk) ≤ lim sup
k→∞

J(ujk) ≤ J(u†) ≤ J(u) (4.14)

for all u ∈ U . Thus, û is a J-minimising solution, which implies by its uniqueness that
û = u†. Moreover, from (4.14) we deduce J(ujk)→ J(u†).

As in the proof of Theorem 4.9, all arguments can be applied to any subsequence of
{uj}j∈N, which shows that uj → u† in τU and J(uj)→ J(u†).

Remark 4.12. Similar to the stability we can get strong convergence if J satisfies the
Radon-Riesz property.
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4.2.4 Convergence rates

In the last section we have proven convergence of the regularisation method in the topology
τU and not in the norm as in Chapter 3. Thus, we cannot expect to prove convergence
rates in the norm. However, it turns out we can prove convergence rates in the Bregman
distance.

Theorem 4.11. Assume the setting of Theorem 4.7 that guarantees that the mapping Rα
is well-defined. Let f ∈ R(K) be clean data and u† be a solution of the inverse problem,
i.e. f = Ku†, and consider noisy data f δ ∈ V with ‖f − f δ‖V ≤ δ. Moreover, let u† satisfy
the source condition

p = K∗w ∈ ∂J(u†)

and denote uδα := Rαf
δ. Then,

(a) Dp
J(uδα, u

†) ≤ δ2

2α
+ ‖w‖V∗δ +

α‖w‖2V∗
2

,

(b)
1

2
‖Kuδα − f δ‖2V ≤ δ2 + 2α‖w‖V∗δ + 2α2‖w‖2V∗ , and

(c) J(uδα) ≤ δ2

2α
+ J(u†) .

Moreover, for the a-priori parameter choice rule α(δ) = δ we have

Dp
J(uδα, u

†) = O(δ), ‖Kuδα − f δ‖V = O(δ), and J(uδα) ≤ J(u†) +O(δ) .

Proof. From the minimising property of uδα and Ku† = f it follows that

1

2
‖Kuδα − f δ‖2V + αJ(uδα) ≤ 1

2
‖Ku† − f δ‖2V + αJ(u†) ≤ δ2

2
+ αJ(u†) . (4.15)

From the non-negativity of the data term and (4.15) we derive assertion (c) as

J(uδα) ≤ 1

α

(
1

2
‖Kuδα − f δ‖2V + αJ(uδα)

)
≤ δ2

2α
+ J(u†) .

Moreover, by reordering the terms of (4.15) and completing Bregman distance, we get

1

2
‖Kuδα − f δ‖2V + αDp

J(uδα, u
†) ≤ δ2

2
− α〈p, uδα − u†〉

where we can further estimate

−〈p, uδα − u†〉 = −〈w,K(uδα − u†)〉 = −〈w,Kuδα − f〉
≤ ‖w‖V∗‖Kuδα − f‖V ≤ ‖w‖V∗

(
‖Kuδα − f δ‖V + δ

)
Combining the two yields

1

2
‖Kuδα − f δ‖2V + αDp

J(uδα, u
†) ≤ δ2

2
+ α‖w‖V∗δ + α‖w‖V∗‖Kuδα − f δ‖V

≤ δ2

2
+ α‖w‖V∗δ +

α2‖w‖2V∗
2γ

+
γ

2
‖Kuδα − f δ‖2V

where we used ab ≤ 1
2a

2 + 1
2b

2 for the second inequality. Thus, we derive

(1− γ)
1

2
‖Kuδα − f δ‖2V + αDp

J(uδα, u
†) ≤ δ2

2
+ α‖w‖V∗δ +

α2‖w‖2V∗
2γ

.

Choosing γ = 1 and γ = 1/2 yields the assertions (a) and (b).
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Remark 4.13. Note that we did not use the source condition for the assertion (c), thus
it is true for all solutions u† of the inverse problem, i.e. Ku† = f .

Remark 4.14. We did not explicitly assume that u† is a J-minimising solution. However,
let U be a Hilbert space and J(u) = 1

2‖u‖2U . Then the source condition is equivalent to
K∗w = u† which is in turn equivalent to u† ∈ R(K∗) = N (K)⊥. Thus, by Corollary 2.1,
u† is the minimal norm solution.



Chapter 5

Numerical Solutions

5.1 More on derivatives in Banach spaces

In order to make better sense out of the optimality conditions, we have to discuss some
more properties of the subdifferential.

Definition 5.1. Let E : U → R be a mapping from the Banach space U and u ∈ U . If
there exists an operator A ∈ L(U ,R) = U∗ that

lim
h→0

|E(u+ h)− E(u)−Ah|
‖h‖U

= 0 ,

holds true, then E is called Fréchet differentiable in x and E′(u) := A the Fréchet derivative
in u. If the Fréchet derivative exists for all u ∈ U , the operator E′ : U → U∗ is called Fréchet
derivative.

Example 5.1. Let U be a Banach space and p ∈ U∗. Then the Fréchet derivative of p is
given by p′ = p.

Example 5.2. Let U be a Hilbert space and M ∈ L(U ,U). Then the Fréchet derivative
of E : U → R,

E(u) = ‖u‖2M := 〈Mu, u〉
at any u ∈ U is given by

E′(u) = 〈(M +M∗)u, ·〉 ,

and thus by the Riesz representation theorem can be identified with (M +M∗)u.
Moreover, if M is self-adjoint then E′(u) = 2Mu.

Proof. Simple calculations show that

E(u+ h)− E(u) = 〈(M +M∗)u, h〉+ 〈Mh, h〉

which shows that

|E(u+ h)− E(u)− 〈(M +M∗)u, h〉|
‖h‖U

=
|〈Mh, h〉|

2‖h‖U
≤ ‖M‖‖h‖U

2
→ 0

for ‖h‖ → 0.

71
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Example 5.3. Let U ,V be Hilbert spaces, K ∈ L(U ,V), f ∈ V and E : U → R be defined
as E(u) := 1

2‖Ku− f‖2U . Then the Fréchet derivative of E can be identified with

E′(u) = K∗(Ku− f) .

Proof. For any u ∈ U , an easy calculation shows that

1

2
‖K(u+ h)− f‖2U −

1

2
‖Ku− f‖2U = 〈Ku− f,Kh〉U +

1

2
‖Kh‖2U

and thus with Ah := 〈K∗(Ku− f), h〉U we have that

|E(u+ h)− E(u)−Ah|
‖h‖U

=
|12‖K(u+ h)− f‖2U − 1

2‖Ku− f‖2U − 〈K∗(Ku− f), h〉U |
‖h‖U

=
|〈Ku− f,Kh〉U + 1

2‖Kh‖2U − 〈Ku− f,Kh〉U |
‖h‖U

=
1

2
‖Kh‖U ≤

1

2
‖K‖‖h‖U → 0

as ‖h‖U → 0.

Proposition 5.1. Let U be a Banach space and E : U → R be a convex functional that is
Fréchet differentiable in u ∈ U . Then

∂E(u) = {E′(u)} .

Proof. Let p ∈ ∂E(u). Then for every v ∈ U , h > 0 there is

〈p, v〉 =
1

h
〈p, u+ hv〉 ≤ 1

h
[E(u+ hv)− E(u)]

and similar for h < 0 there is

〈p, v〉 ≥ 1

h
[E(u+ hv)− E(u)] .

Thus,

〈E′(u), v〉 = lim
h↑0

1

h
[E(u+ hv)− E(u)]

≤ 〈p, v〉 ≤ lim
h↓0

1

h
[E(u+ hv)− E(u)] = 〈E′(u), v〉

which shows p = E′(u).
On the other hand, let v ∈ U and h ∈ (0, 1] there is

1

h
[E(u+ h(v − u))− E(u)] =

1

h
[E((1− h)u+ hv)− E(u)]

≤ 1

h
[(1− h)E(u) + hE(v)− E(u)] = −E(u) + E(v)

and thus

E(u) + 〈E′(u), u− v〉 = E(u) + lim
h↓0

1

h
[E(u+ h(v − u))− E(u)]

≤ E(u)− E(u) + E(v) = E(v)

thus E′(u) ∈ ∂E(u).
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Theorem 5.1 (e.g. [6, p. 279]). Let U ,V be normed spaces, E,F : U → R∞ be proper and
convex. Then the following rules for the subdifferential hold.

(a) ∂(λE) = λ∂E for λ > 0.

(b) ∂(E◦Tv) = ∂E(u+v) for any v ∈ U and the translation operator Tv : U → U , Tv(u) =
u+ v.

(c) ∂E + ∂F ⊂ ∂(E + F ) and equality if there exists u ∈ dom(E)∩ dom(F ) such that E
is continuous in u.

Corollary 5.1. Let U be a normed space, E : U → R be convex and Fréchet differentiable
and F : U → R∞ be convex. Then for all u ∈ dom(E + F ) = dom(F ) it holds

∂(E + F )(u) = E′(u) + ∂F (u) .

5.2 Minimization problems

5.2.1 Gradient Descent

In this section we will analyse the iteration

uk+1 = uk − τE′(uk) (5.1)

called gradient descent which is one of the most popular iterations to solve smooth min-
imisation problems.

Lemma 5.1 (Descent Lemma). Let E : U → R be Fréchet differentiable and E′ Lipschitz
continuous with constant L ∈ R (which we will call L-smooth in what is to follow). Then
for all x, y ∈ U there is

E(x) ≤ E(y) + 〈E′(y), x− y〉+
L

2
‖x− y‖2 .

Proof. For any t ∈ [0, 1] define g(t) := E(y + t(x − y)) for which we obviously have
g(1) = E(x) and g(0) = E(y). Then we have that∫ 1

0
〈E′(y + t(x− y))− E′(y), x− y〉dt ≤

∫ 1

0
‖E′(y + t(x− y))− E′(y)‖‖x− y‖dt

≤
∫ 1

0
Lt‖x− y‖2dt

=
L

2
‖x− y‖2

and can further estimate

E(x)− E(y) = g(1)− g(0) =

∫ 1

0
g′(t)dt

=

∫ 1

0
〈E′(y + t(x− y)), x− y〉dt

=

∫ 1

0
〈E′(y), x− y〉dt+

∫ 1

0
〈E′(y + t(x− y))− E′(y), x− y〉dt

≤ 〈E′(y), x− y〉+
L

2
‖x− y‖2 .
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Remark 5.1. If E is convex, then the inequality of the lemma can also be written in terms
of the Bregman distance as DE′(y)

E (x, y) ≤ L
2 ‖x− y‖2.

Theorem 5.2 (Convergence of gradient descent). Let E be L-smooth and the step size of
gradient descent be chosen as

τ <
2

L
.

Then gradient descent monotonically decreases the function value, i.e.

E(uk+1) ≤ E(uk) .

Moreover, if E is bounded from below, then the gradients convergence to zero, i.e.

‖E′(uk)‖ → 0 ,

with rate (for some C > 0)

min
k=0,...,K−1

‖E′(uk)‖ ≤ C

K1/2
.

Proof. Choosing x = uk+1 and y = uk in the Descent Lemma yields

E(uk+1)− E(uk) ≤ 〈E′(uk),−τE′(uk)〉+
L

2
‖τE′(uk)‖2

= −τ‖E′(uk)‖2 +
τ2L

2
‖E′(uk)‖2 = − c

2
‖E′(uk)‖2

(5.2)

with c := τL
(

2
L − τ

)
> 0 which shows the monotonic descent.

Moreover, summing (5.2) over k = 0, . . . ,K − 1 yields

E(uK)− E(u0) ≤ −c
K−1∑
k=0

‖E′(uk)‖2

and after rearranging

K−1∑
k=0

‖E′(uk)‖2 ≤ E(u0)− E(uK)

c
≤ E(u0)− infu∈U E(u)

c
≤ C2 .

Thus, letting K →∞ we have that

‖E′(uk)‖ → 0

and the convergence is with rate

min
k=0,...,K−1

‖E′(uk)‖2 ≤ 1

K

K−1∑
k=0

‖E′(uk)‖2 ≤ C2

K
.

Taking the square root completes the proof.

Remark 5.2. It follows from the theorem that if {uk}k converges, then it converges to a
stationary point u∗ ∈ U with E′(u∗) = 0.



Bibliography

[1] R. A. Adams and J. J. F. Fournier. Sobolev Spaces. Elsevier Science, Singapore, 2003.

[2] A. B. Bakushinskii. Remarks on the choice of regularization parameter from qua-
sioptimality and relation tests. Zhurnal Vychislitel’noï Matematiki i Matematicheskoï
Fiziki, 24(8):1258–1259, 1984.

[3] H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator Theory
in Hilbert Spaces. 2011.

[4] B. Bollobás. Linear Analysis: An Introductory Course. Cambridge University Press,
Cambridge, second edition, 1999.

[5] N. Bourbaki. Topological Vector Spaces. Éléments de mathématique. Springer-Verlag,
1987.

[6] K. Bredies and D. A. Lorenz. Mathematische Bildverarbeitung: Einf{ü}hrung in
Grundlagen und moderne Theorie (German). Vieweg+Teubner Verlag, 2011.

[7] I. Ekeland and R. Témam. Convex Analysis and Variational Problems. 1976.

[8] E. Giusti. Minimal Surfaces and Functions of Bounded Variation. Birkhaeuser, Basel,
Boston, Stuttgart, 1984.

[9] C. W. Groetsch. Stable approximate evaluation of unbounded operators. Springer,
2006.

[10] J. Hunter and B. Nachtergaele. Applied Analysis. World Scientific Publishing Company
Incorporated, 2001.

[11] A. W. Naylor and G. R. Sell. Linear Operator Theory in Engineering and Science.
Springer Science & Business Media, 2000.

[12] A. Rieder. Keine Probleme mit Inversen Problemen: Eine Einführung in ihre stabile
Lösung. Vieweg+Teubner Verlag, 2003.

[13] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D: Nonlinear Phenomena, 60(1):259–268, 1992.

[14] W. Rudin. Functional Analysis. International series in pure and applied mathematics.
McGraw-Hill, 1991.

[15] T. Tao. Epsilon of Room, One, volume 1. American Mathematical Soc., 2010.

[16] E. Zeidler. Applied Functional Analysis: Applications to Mathematical Physics, volume
108 of Applied Mathematical Sciences Series. Springer, 1995.

75



76 BIBLIOGRAPHY

[17] E. Zeidler. Applied Functional Analysis: Main Principles and Their Applications,
volume 109 of Applied Mathematical Sciences Series. Springer, 1995.


	Introduction to inverse problems
	Examples
	Matrix inversion
	Differentiation
	Deconvolution
	Tomography


	Linear inverse problems
	Generalised solutions
	Generalised inverse
	Compact operators
	Singular value decomposition of compact operators

	Regularisation
	Parameter-choice strategies
	A-priori parameter choice rules
	A-posteriori parameter choice rules
	Heuristic parameter choice rules

	Spectral regularisation methods
	Convergence rates
	Truncated singular value decomposition
	Tikhonov regularisation
	Source-conditions
	Asymptotic regularisation
	Landweber iteration

	Tikhonov regularisation revisited

	Variational regularisation
	Variational methods
	Background
	Minimisers
	Existence
	Uniqueness

	Well-posedness and regularisation properties
	Existence and uniqueness
	Continuity
	Convergent regularisation
	Convergence rates


	Numerical Solutions
	More on derivatives in Banach spaces
	Minimization problems
	Gradient Descent



