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Abstract

In geosciences, especially in oceanography, every year more and
more time series are recorded with more and more measure-
ments. Hence, there is a need to analyse these data sets auto-
matically or at least to preprocess them for manual analysis. One
of these kind of data is the pressure measured at the bottom of
the ocean. Most components in these data sets are dominated by
the tides and therefore, hard to identify. In this Diploma thesis we
developed a new tool for analysis of sea floor pressure data sets,
Sparse Decomposition. ¢! minimisation enforces sparsity in an
overcomplete dictionary which yields to physical feasible decom-
positions. It turned out that Sparse Decomposition outperforms
other novel as well as classical decomposition tools in this appli-
cation.
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Introduction

In recent years due to the development in engineering the possibilities of mea-
suring and storing time series’ have grown a lot. Nowadays large observational
networks like EarthScope! or Neptune Canada? collect lots of data series 24/7,
hence, there is a need to process these data automatically or at least semi-automat-
ically.

These networks and other scientists collect lots of different data while observing
the ocean. In this Diploma thesis we focus on analysis of sea floor pressure data sets,
but in principle most of the presented notions can be applied to other kinds of time
series or even to images as well. The sea floor pressure data is often measured by
an ocean bottom pressure meter, see Figure 1.1. This measuring device is situated
on the bottom of the ocean mostly at ridges or other interesting areas to obtain the
pressure of the water column above. Of course no one is interested in this pressure
itself but this pressure is an indicator of the water height above the sensor.

Figure 1.1.: Two different ocean bottom pressure meter for measuring the sea floor
pressure. The picture on the right hand side is taken at the Logatchev Hydrother-
mal Field. Both are provided by Prof. Dr. Heinrich Villinger and Dr. Hans-
Hermann Gennerich. © MARUM, University of Bremen

This kind of data series contains tidal pressure variations and the average pres-
sure, but are also influenced by landslides, volcanic activity, earthquakes and

Ihttp://www.earthscope. org/
2http://www.neptunecanada. ca/
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1. Introduction

many other sources. In general, signals small in amplitude or with a short dura-
tion are buried in large-amplitude and long-lasting signals caused by other sources.
The cause of these influences is sometimes deterministic and well known as the
tides, but very often especially long-term changes are not well understood. There-
fore, the aim is to separate the non-deterministic signal probably small in am-
plitude and not visible without processing of the data from the overwhelming
deterministic one.

In the past data analysis was mostly based on Fourier or Wavelet analysis but in
this thesis we want to introduce the notion of sparsity for this application. The new
approach Sparse Decomposition is ¢! minimisation with an overcomplete dictionary.
Given a data set there are infinite many ways of representing it by an overcomplete
dictionary. If our dictionary is not randomly chosen but contains pattern with
physical meaning, we can seek for a representation of this data set by as less as
possible pattern to achieve a physical feasible decomposition.

¢! minimisation is in general not a new notion but the application to data anal-
ysis in geosciences is. A rather applied and good introduction to decomposi-
tion by ¢! minimisation with an overcomplete dictionary is given by Chen et al.
[1999]. Major achievements in ¢ I minimisation are due to Daubechies et al. [2004].
This thesis is mainly based on the recent contributions of Jin et al. [2009], Schiffler
[2010] and Bredies and Lorenz [2011]. The classical variational analysis is also
based on Rockafellar and Wets [1991].

To evaluate the results of Sparse Decomposition we compare them with the clas-
sical decomposition tools like Harmonic and Wavelet Decomposition, which are
based on the Fourier and Wavelet transform, respectively. We also try to apply an-
other novel decomposition tool, called Empirical Mode Decomposition, invented
by Huang et al. [1998] and its enhancement the Ensemble Empirical Mode Decom-
position of Wu and Huang [2009].

A crucial step in analysing data is to get familiar with the data. In Section 1.1
we present the four used data sets.

1.1. Sea Floor Pressure Data

Before we have a look at the single data sets, we briefly summarise some facts
about water pressure. The used unit of pressure is kilopascal and abbreviated by
kPa. If the circumstances, e.g. salt density and temperature, are almost constant,
there is a simple relationship between the sea surface height and the sea floor
pressure. Since the density of water is nearly constant in the ocean an increase of
the sea floor pressure by 1 kPa results in an increase of almost 10 cm of the height
of the water column above the sensor. Consequently, one might think in height of
the water column [cm] instead of the sea floor pressure [kPa].

One aspect why the sea floor pressure data is interesting for geoscientists is that
a change in the sea floor pressure can be the result of a vertical movement of a
tectonic plate. An increase in sea floor pressure can be an increase in the water



1.1. Sea Floor Pressure Data

column above the sensor and a downdrift of the tectonic plate.
Mainly, we are interested in the change of the sea floor pressure. Thus, we store
our data as sea floor pressure variations around the mean of the data set.

Logatchev
~.. Hydrothecrmal Field

Figure 1.2.: Left: Mid-Atlantic Ridge (based on a map of NOAA?, © NOAA);
Right: Position of MAR: Logatchev Hydrothermal Field and the corresponding
tectonic plates. The sensor is located at 14° 45" N and 44° 5" W. (based on a public
domain image?)

The first data set, called MAR, was recorded by a sensor at the Logatchev Hy-
drothermal Field which is located at the Mid-Atlantic Ridge, see Figure 1.2. The
Mid-Atlantic Ridge is with 65,000 km the longest mountain range in the world
even if it is mostly below the sea surface. It separates at the Logatchev Hydrother-
mal Field the South American Plate from the African Plate. The measurements
were made to monitor the magmatic and hydrothermal activity. The duration
of the data set is only one month, but due to the short sampling interval of two
minutes over 22,000 measurements are needed. As a consequence of the short
duration and the short sampling interval we focus on short period effects when
analysing this data set.

The second and third data sets, called CORK1 and CORK?2, are both recorded
at Vancouver Island. The tectonic plates of interest are the small Juan de Fuca
Plate and the huge surrounding plates, namely the Pacific Plate at the west end
and the North American Plate at the east end. These data sets differ a lot from the
first one in two features. The duration of the measurements and the number of
measurements are a lot larger than at the data set MAR. CORK1 has a sampling
interval of 10 minutes and by over 115,000 measurements the sea floor pressure
is recorded for more than two and a half years. The data set CORK2 has a much
larger sampling interval of 60 minutes but since over 9 years are recorded around

Shttp://www.ngdc.noaa.gov/mgg/global/relief /ETOPO5/IMAGES/GIF/SLIDELS . GIF
4http://commons.wikimedia.org/wiki/File:Plaques_tectoniques_petit.gif
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North American
Plate

Juan de Fuca

Plate %,, Figure 1.3: Position of CORK1
and CORK2: Vancouver Island
and the corresponding tectonic
plates. The sensor is located at
48° 26’ N and 128° 43" W. (based
on a public domain image®)

80,000 measurements are needed. Another characteristic of these data sets is that
the time period of CORK1 is a subset of the time period of CORK2. This might be
used to evaluate boundary effects of our tools at the "left end” of CORK1, since we
know how the pressure was before starting the record.

These data sets were recorded with high-resolution absolute pressure sensors®
with a resolution of 7 Pa.

The fourth data set is called SYN and is a synthetic data set. We have created
this data set to evaluate the used methods. All methods have to decompose the
data sets into 'real” features but since we do not know what is real there is a need
for a synthetic data set with a known real decomposition.

20,

) ‘ | Il

-2 1 1 I I I i i i
0 5 10 15

SYN

pressure variations [kPa]

20
time [days]

Figure 1.4.: Synthetic data set. (SYN)

The data set SYN, shown in Figure 1.4, has a length of six weeks and a sampling
interval of 60 minutes, hence, 1,000 measurements are needed. It is a superposition
of five different components, namely noise, a short period signal, tides, a step and
monotonically increasing ramp function. These components are shown in Figure
1.5.

The two short period signals might represent earthquakes or other phenom-

Shttp://commons . wikimedia. org/wiki/File:Plaques_tectoniques_petit.gif
Shttp://www.paroscientific.com/uwapp.htm
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1.2. Overview

ena with a short duration. The tides are calculated with the Matlab® function
t_tide.m written by Pawlowicz et al. [2002]. The geographic location, which is
needed for t_tide.m, is taken as the position of Vancouver Island. The step in
the middle of the time series simulates a tectonic or oceanographic event, like a
sudden downdrift of a tectonic plate, which results in an immediate decrease of
the sea floor pressure. As a global trend a monotonically increasing ramp function
with a total increase of roughly 0.2 kPa is added. This might represent a slow but
steady downdrift of the sea floor by tectonical movements. Furthermore, white
noise with a RMS (root mean square) of 49.16 Pa is added to the data set.

If we have a closer look at the de-
composition in Figure 1.5 we see that

e
o

amplitudes of the components are in £ -

a different scale. On the one hand, _ _ 05

the tides have an amplitude of around i;% 70'(5)

15 kPa, which is around 1.5 m when 2 ;0 ]
we think of the water height. On the % 2 722

other hand, the effects we want to de- ;; . 02

tect have an amplitude from 0.1 kPato =7 )

0.5 kPa, which are only some centime-  _ ** T
tres in change of the water heightorup = Y (2) ]

5 10 15 20 25 30 35 40
time [days]

to 3 % of the tides. Additionally, the
added noise’s amplitude is also 0.1 kPa
which is less than 1 % when compared
to the tides. However, it is between 20
% and 100 % when compared to the ef-
fects we are looking for.

Overall, every data set has a specialised property to evaluate the used tools. The
data set MAR has a short sampling interval so this is best for detecting short last-
ing effects. For long time observation the data sets CORK1 and CORK2 are well
suited either with a sampling interval of medium length or with an extraordinary
duration. At the data set SYN we know already what we want to find since it is
created by ourselves.

A summary of the details of all four data sets is given in Table 1.1.

o

Figure 1.5.: Real decomposition of the
synthetic data set.

1.2. Overview

First of all, we have a look at general minimisation problems and the neces-
sary framework. Then, we show under which assumptions a minimiser uniquely
exists and derive an optimal condition, which is necessary and sufficient for the
minimiser. This is all done in Chapter 2.

In Chapters 3 and 4 we apply the results to a stable /! minimisation, called elastic
net, and derive a fast algorithm, called Regularised Feature Sign Search (RFSS), to
solve this problem in finite dimensions.
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Table 1.1.: Details of the used data sets.

Data Set Start End Duration Sampling Number of
[days]  Interval [min] Measurements
SYN 41.7 60 1,000
MAR  01.05.2008 31.05.2008 30 2 22,319
CORK1 26.06.2003 15.09.2005 813 10 117,012
CORK2 11.09.1996 15.09.2005 3292 60 78,983

The following Chapter 5 is dedicated to the analysis of sea floor pressure data.
This contains the introduction of the five used decomposition tools as well as the
presentation and discussion of the results.

Lately in Chapter 6, we conclude this thesis by a brief summary and discussion
of the main points.



Foundations of
Variational Calculus and
Convex Analysis

This chapter should provide the reader some basics about the foundations of
variational calculus and convex analysis. Moreover, we want to treat minimisation
problems in general and focus on the existence of a solution and possibilities how
to find them. It turns out that convexity of the corresponding function and the
notion of subdifferential calculus are two key points to reach our aim but there are
also other notions which are needed to get a satisfying solution.

In the whole work we treat only real vector spaces since this is needed for the
application. The theory for complex vector spaces might be very similar to the real
version but at least the subdifferential calculus has to be defined in another way.

2.1. General Definitions and Framework

In general, in minimising theory we are looking for a solution of the problem
min f(x)

with a corresponding function f : A — R and A any set. We call x* € A a solution
of the minimising problem if and only if f(x*) = min,ca f(x) < f(x) Vx € A.
Later on, we refer to x* as a minimiser.

Sometimes it is helpful that the set where we are looking for our solution has
structure like a vector space or a Hilbert space. Let X be a space of the needed
structure and suppose that A C X. Then we can find a numerical function g :
X — R U {oo} so that x* is a solution of min,c4 f(x) if and only if x* is a solution
of min,ecx g(x). The function g, which fulfils this requirement, can be defined as

) fx), ifxeA
g“%_{m if x ¢ A.

As we have seen it is very useful to allow that the function we want to minimise
can take the value oo, thus we define some calculations as well as an ordering on
R U {o0}.

Definition 2.1.1 (extended real numbers). We extend the real numbers R to Ry 1=
R U {oo} with the ordering

<o VieRe and t<oostelR

The added summation and multiplication calculation rules are
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1. VtERy: t+o0o:=0c0+1t:=00,
2.Vt>0: t-co:=oc0-t =00,
3. 0-c0:=00-0 :=0.

Other operations like subtraction of co and multiplication with negative real numbers are
not defined.

Note that with this ordering R, is also a total ordered set.
In most cases we consider functions f : X — Re. To distinguish the usual from
the trivial case, i.e. f = 0o, we define some useful terms.

Definition 2.1.2 (effective domain, proper). Let A be any set. For every function
f 1 A — Re we define the effective domain as

domf:={x€ A: f(x) < co}.

f is called proper if the effective domain is not empty, i.e. dom f # @, which means
f # oo.

Another notion which is necessary is the epigraph. For the special case f : R —
R it is the area above the graph of f, however, we need it for more general func-
tions. Its topological properties give also an insight to the properties of f.

Definition 2.1.3 (epigraph). Let A be any set. For every function f : A — R we
define the epigraph as

epif:={(x,y) € AxR: f(x) <y}

Yy y

NP7 SR g

(a) closed epigraph (b) not closed epigraph (c) closed epigraph

Figure 2.1.: Three different examples of functions f : R — R« with their epigraph
coloured in light blue. The solid circle symbolises that this point belongs to the
graph and the empty one does not. The light blue line indicates the boundary of
the epigraph. A solid/dashed line does/does not belong to the epigraph.

To be more confident in handling functions f : R — IR« and their epigraphs
three examples are shown in Figure 2.1. The function in Figure 2.1a does not take
the value co, hence, the epigraph is the area over the graph. On the contrary,
the other functions take the value co and the epigraph is ‘cutted” at this points.



2.1. General Definitions and Framework

Another mentionable fact is that the epigraph can be closed (Figure 2.1c) or not
(Figure 2.1b). In general, if a function is proper the epigraph is never open.
2.1.1. Convexity

A pretty helpful property in variational calculus is the convexity of a function.
The strict convexity provides the uniqueness of the minimiser what will be proven
later on.

Definition 2.1.4 (convex and strictly convex functions). Let X be a vector space. The
function f : X — R is called convex if for all x1,x, € Xand 0 < A <1

fx 4+ (1= A)xz) SAf(x1) + (1= A)f(x2)
is satisfied. It is called strictly convex if also the strict inequality
fx 4+ (1 =A)xz) <Af(x1) + (1= A)f(x2)

holds for every x1,x2 € X, x1 # X2, f(x1), f(x2) < o00and 0 < A < 1.

Some examples for convex, strictly convex and non-convex functions are given
in Figure 2.2. Since the right hand side of these functions is the same the important
part is the left hand side. The reason why the function in Figure 2.2a is only convex
but not strictly convex is the linear part and the problem of the function in Figure
2.2¢ is the hook.

y y y
o— o— o—
\ x \ \ / x \ x
(a) convex (b) strictly convex (c) not convex

Figure 2.2.: The three different types of convexity: a) convex, b) strictly convex
and c) not convex. The epigraphs is of these functions are drawn in light blue.

Remark 2.1.5. f is convex if and only if epi f is convex. Since dom f is the image
of the projection to X of epi f and this is a linear transformation, dom f is convex
as well if f is convex. [Rockafellar, 1972]

This yields an alternative definition of convexity which can be visualised, at
least for functions from R to R.

Lemma 2.1.6 (sum of convex functions). Let X be a vector space and f,g : X — Rq
be two functions. Then there are the following two rules for the sum these functions.
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1. f,gconvex = f+ g convex
2. f convex and g strictly convex = f + g strictly convex

Proof. Let x1,x, € X and 0 < A < 1be arbitrary chosen. First, we consider the case
that the functions are convex. Then there is

(f+8) A+ (1—=A)x2) = f(Axg + (1 —A)xp) + g(Ax1 + (1 — A)x2)
< Af(x1) + (1= A)f(x2) +Ag(x1) + (1 — A)g(x2)
= Alf(x1) + g(x1)] + (1 = A)[f(x2) + g(x2)]
=AMf+8)(x1) + (1= A)(f +8)(x2).

Next, if g is strictly convex, then the inequality is strict. O

Lemma 2.1.7 (multiple of a convex function). Let X be a vector space, f : X — Reo
and o« € R. Then the following multiplication rules hold.

1. fconvexandaw >0 = af convex
2. f stricly convexand « >0 = af strictly convex

Proof. Let x1,x, € X and 0 < A < 1 be arbitrary chosen.
Ad 1.: Straightforward calculations result

(af) (Ax1+ (1= A)xp) = af (Axy 4+ (1 — A)xp)
< afAf(x1) + (1= A)f(x2)]
= Aaf(x1) + (1= A)af(xz)
= Maf)(x1) + (1= A)(af)(x2).

Ad 2.: If the multiplier is positive and the function strictly convex, then the
inequation is strict. O

2.1.2. Dual Spaces and Weak Convergence

In many parts of this diploma thesis we consider dual spaces. Of course the reader
should be familiar with dual spaces but to adjust the definition and notation these
are stated in the following.

Definition 2.1.8 (dual and double dual space). Let X be a normed space, then X'
denotes the dual space of X which is the space of all linear and continuous mappings
from XtoR,ie. X' := L(X,R).

Motivated by the Riesz representation theorem 2.1.9 we denote for every x € X and
x' e X' x'(x) by (x’,x). It looks like a scalar product, but it is not even if most of its
properties are also valid here. Since the dual space of a normed space is again a normed
space, it has a dual space. This dual space is called the double dual space of X, X" :=
(X"

10
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Theorem 2.1.9 (Riesz representation theorem, Alt [2006, page 163]). Let H be a
Hilbert space. Then the mapping | : H — H',J(x)(y) = (x,y)n is an isometric
isomorphism.

Also often used when talking about dual spaces is the adjoint operator.

Definition 2.1.10 (adjoint operator). Let X,Y be normed spaces and A € L(X,Y).
Then the adjoint operator A’ is a mapping A" : Y — X' which satisfies for every
yeYandx € X

(A'y,x) = (v, Ax).

The suitable space for our minimisation problems are reflexive spaces, since it
gives us the existence of a weak limit of minimising sequences. As it turns out
later on, this weak limit is a good candidate for a minimiser.

Definition 2.1.11 (reflexive space). Let X be a normed space. We define the mapping
n: X — X" by (4(x),x") := (x',x). This mapping is well defined, linear, continuous
and injective [Rudin, 1991, page 95]. If it is also surjective X is called reflexive.

Remark 2.1.12. Since we consider only real normed spaces, every dual space is
a Banach space [Alt, 2006, page 142] and consequently every reflexive space is a
Banach space as well.

The norm topology is sometimes very restrictive and to prove the existence of
a minimiser it might be more appropriate to use the notion of weak convergence
since there exists more weak than norm converging sequences.

Definition 2.1.13 (weak convergence). Let X be a normed space. We say a sequence
(xn)nen € XN converges weakly to x* € X if for all x' € X’ there holds

lim (¥, x,,) = (x/, x*)

n—oo
and notate this by w-lim,_,« X, = x™.

Remark 2.1.14. Since there holds for every x,x, € X and x’ € X’
(' 20n) = (&, x) [ = [, 200 — )| < || [0 — x]x,

every sequence which converges in norm converges also weakly and the weak
limit is the same as the norm limit.

Remark 2.1.15. In Hilbert spaces H exist an equivalent expression of weak con-
vergence, because their dual space is isomorph to themself, i.e. H ~ H’, see Riesz
representation theorem 2.1.9.

w-limy, e Xy = x* & Im (x,x,)y = (x,x")y VxeH
n—oo

11



2. Foundations of Variational Calculus and Convex Analysis

At last in this section we state two lemmas when weak convergence and con-
vergence of some norms imply norm convergence.

Lemma 2.1.16. Let ‘H be any Hilbert space, (x;)nen € HN, x* € H, w-lim,, 00 X, =
x* and lim,, 0 || X, || = ||x*||. Then there holds lim,, e x,, = x*.

Proof. Since we are in a Hilbert space, we can use the remark as well as the usual
Hilbert space identity ||-||> = (-, -), thus,

v — 2|2 = [l |* = 2", xa) + |||
= lloeull? = 111 = 2(x", x) +2(x", x7)

< Ml = [1*[12] +2 [{x, 2* — xa)] -

—0 —0

O

If we do not have a Hilbert space we have to restrict ourselves to the special
case /7,1 < p < oo. By using the counting measure / we can rewrite the norm of
any x € (¥ as

o0
Il = X lnl? = [ Jx1” ds,
n=1 N
which gives us the possibility to use Fatou’s lemma.

Theorem 2.1.17 (Fatou’s lemma, Elstrodt [2004, page 144]). Let (X, A, u) be a mea-
sure space. Then for every sequence of non-negative measureable functions (f*)ren,
¥ X — Re, there holds

liminf X dy < i ‘f/ m
Jmint £t <inind [ 7
Lemma 2.1.18 (Jin et al. [2009, page 6]). Let 1 < p < 00,1 < g < oo, (xF)jen €
(N, x* € 01, w-limy_o ¥ = x* in 07 and limy_, ||x*||;» = ||x*||¢». Then there
holds limy_, . x* = x* in £P.

Proof. Fatou’s lemma 2.1.17 implies

limsup [|x* — x*|[j, = limsup [I\xkl\?p M = NG + e [17) + 1" = X*Iliﬂ

k—o0 k—o0

< limsup |:kaH?p + HX*HZ’}

k—o0
+timsup [—(|x4]15, + [1x°15) + 13 = 27115
k—o00
- k k
= 2[|x" I}, — liminf Y [[x§]P + [x; 1P — |xf — ;17|

n=1

(o]
< 2[x* |, = Y liminf |7 + |3 |? — |5 — ;17 -
n=1

12



2.1. General Definitions and Framework

Finally, since weak convergence in ¢9 implies pointwise convergence, we have

(o)
limsup [l — (15, < 2l|x* |}, — 3 liminf ||k |7 + 1P =[xk — x;)7]
k—oo =1 k—o0

oo
= 2[|x* (1}, — Y [P + |xl”] = 2l|x*[I7, — 2[lx* [l = 0.

n=1

2.1.3. Semicontinuity

Let us have a second look at Figure 2.1 on page 8. There is an important point
which was not mentioned yet. Two of the illustrated functions do have a min-
imiser and one has not. The function plotted in Figure 2.1a is continuous and has
a minimiser but the one in Figure 2.1c is not continuous and also has a minimiser.
Obviously continuity is not necessary for having a minimiser, it is lower semicon-
tinuity or in infinite dimensions weak lower semicontinuity.

Definition 2.1.19 (lower semicontinuity, weak lower semicontinuity). Let X be a
normed space and a function f : X — Re. f is called lower semicontinuous if for
every sequence (x,)yen € XN and x € X with limy, e X, = x
f(x) < liminf f(x,)
n—oo

is fulfilled. f is called weak lower semicontinuous if this is also fulfilled if the sequence
(xn)neN converges only weakly.

y y y
—0 o— — .
o— S —
X ¢ \ X o X
(a) lower semicontinuous (b) lower semicontinuous (c) not lower semicontinuous

Figure 2.3.: The solid circle symbolises that this point belongs to the graph and
the open one does not. The functions in a) and b) are lower semicontinuous, but
the function in c) is not. Additionally the epigraph of these functions is plotted in
light blue

Here as well we want to clarify this terms by using some examples. In finite

dimensions every weak convergent sequence is also norm convergent and vice
versa and we are only able to plot functions f : R — Re. Thus, we can not

13



2. Foundations of Variational Calculus and Convex Analysis

show the differences of these terms by plotting some examples. But what we can
do is to have a look which functions are lower semicontinuous and which are
not. One can easily see that in normed spaces every continuous function is lower
semicontinuous, thus we have to have a look at discontinuous functions. Some
examples are shown in Figure 2.3. We see that at points where the function is
discontinuous and the left and right limit exists, i.e. both limits are different, the
lower one has to belong to the graph.

Another fact can also be seen from Figure 2.3. The examples in Figure 2.3a
and 2.3b are lower semicontinuous and have a closed epigraph. Contrary to these
examples, the function in Figure 2.3c is not lower semicontinuous and its epigraph
is not closed. In the following lemma we generalise this fact and prove it.

Lemma 2.1.20 (Bredies and Lorenz [2011, page 250]). Let X be a normed space. The
function f : X — R is

1. lower semicontinuous if and only if epi f is closed and

2. weak lower semicontinuous if and only if epi f is weak sequentially closed.

Proof. We prove only the first part of the lemma. The weak version of this lemma
can be proven in the same way.

Ad '=". Let (x4, Yn)nen € (epif)N with lim, e (x,,v) = (x,y). For every
n € N thereis f(x,) < y, since (x,,y,) € epi f. Then we have

f(x) <liminf f(x,) < liminfy, =y

and consequently (x,y) € epi f.

Ad’<’. Let (xy)neN € XN be a convergent sequence with lim,, .. x, = x. Us-
ing the notation y, := f(x,) the sequence (xy, y»)sen belongs to the epigraph
of f. There is a strictly increasing mapping 7 : IN — IN so that the subse-
quence (Y, (n))neN Of (¥n)nen converges to the limit inferior, i.e. limy—coYy(n) =
liminf, e Yn.

As the epigraph is sequentially closed, there exists again a strictly increasing
mapping ¢ : N — IN and (x*,y*) € epif so that lim,—co X)) = x* and
limy—co Yyu(y(n)) = Y¥*- On the one hand, the sequence (x,)nen converges to x
and on the other hand, it has a subsequence converging to x*, hence x = x* and
we obtain

f(X) = f(x*) < y* = lim yy(n(n)) = lim y’?(”) = hmmff(xn)

n—oo n—od n—oo

Remark 2.1.21. The statements in the lemma above about lower semicontinuity
and weak lower semicontinuity differ a little bit since in metric spaces a set is
sequentially closed if and only if it is closed in the topology generated by the
metric. However, there is no metric which generates the weak topology and this
can not be used for the weak lower semicontinuity.
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The last statement of this section is about the difference of lower semicontinuity
and weak lower semicontinuity for convex functions. It is based on the following
classical theorem.

Theorem 2.1.22 (Werner [2007, page 108]). In a normed space every closed and convex
set is weak sequentially closed.

Corollary 2.1.23. Let X be a normed space and f : X — R a convex function. Then f
is weak lower semicontinuous if and only if it is lower semicontiuous.

Proof. Ad '=". Since norm convergence implies weak convergence, every weak
lower semicontinuous function is lower semicontiuous.

Ad '<’". Let f be a lower semicontinuous function. Then epi f is closed and
convex and therefore weak sequentially closed, see Theorem 2.1.22. Using Lemma
2.1.20 we obtain that f is weak lower semicontinuous. O

2.2. Existence Theorems

In the previous section of this chapter we collected lots of notions and simple
properties of them which we need to state a powerful existence theorem for so-
lutions of minimising problems in infinite dimensions. This existence theorem is
called the direct method. Before closing this section we also have a look at finite
versions of existence theorems which might have less restrictive assumptions.

2.2.1. The Direct Method

The existence of a minimiser in infinite dimensions is based on a classical theorem.

Theorem 2.2.1 (Werner [2007, page 107]). In a reflexive space every bounded sequence
has a weakly convergent subsequence.

If we want to use this theorem then minimising sequences have to be bounded,
which is clearly not satisfied in any case as we will see in the following example.
Example 2.2.2. Let us have a look at the minimising problem min,cR f(x) with f :
R — R, f(x) := exp(x). The function has nearly all nice properties, it is smooth,
bounded from below, strictly convex but it fails to have a minimiser because every
minimising sequence is not bounded, e.g. x,, := —n.

The missing property of the exponential function is coercivity. This can be de-
scribed for proper minimisation problems as the solution can not be found ‘at
infinity’, but we will specify this in the following.

Definition 2.2.3 (coercive). Let X be a normed space and f : X — Reo a function. f
is called coercive if for every sequence (x,)nen € X™ with limy, e ||xy||x = oo there
holds

lim f(x,) = oo.

n—oo
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2. Foundations of Variational Calculus and Convex Analysis

By applying this concept to functions defined on a reflexive space we get one of
the most important ingredients for the direct method.

Corollary 2.2.4 (Bredies and Lorenz [2011, page 252]). Let X be a reflexive space,
f + X — Re a proper and coercive function and we consider the minimising problem
minyex f(x). Then every minimising sequence has a weak convergent subsequence.

Proof. Since f is coercive, every minimising sequence (x,)en € XN is bounded.
Assume that there exists an unbounded minimising sequence (x,),en € XW,
which means that lim,_, ||x,||x = c0 and lim,_ f(Xx,) = minyex f(x). But
then, because of the coercivity of f, there is co = lim, .« f(X,) = minyex f(x),
which is a contradiction to the properness of f. Using Theorem 2.2.1 completes
the proof. O

Example 2.2.5. With all the examples stated above it is now easy to see that also
coercivity or coercivity and convexity is not sufficient for the existence of a min-
imiser what is shown in Figure 2.4.

=

X X X

(a) coercive (b) coercive, no o values taken (c) coercive and convex

Figure 2.4.: In all three cases the coercive function does not have a minimiser, even
if the function has any infinite values or is convex. The solid circle symbolises that
this point belongs to the graph and the open one does not.

Finally, we have introduced all needed concepts for the direct method.

Theorem 2.2.6 (direct method in reflexive spaces, Bredies and Lorenz [2011,
pages 250 and 254]). Let X be a reflexive space and f : X — Re a weak lower semicon-
tinuous, coercive and proper function which is bounded from below. Then the minimisa-
tion problem minycx f(x) has a solution in X.

Proof. Since f is bounded from below and proper, there exists a minimising se-
quence (x,)yen so that lim, . f(x,) = infrex f(x) € R.

From Corollary 2.2.4 we obtain that there exists a weak limit x* € X and a
strictly increasing mapping # : N — IN so that w-lim,, . x,,(,, = x*. By the weak
lower semicontinuity of f we obtain

inf f(x) < f(x*) < lminf f(x,,)) = lim f(x,,)) = lim f(x,) = inf f(x),

xeX n—co n—oo n—oo xeX

1(n)
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thus, we proved that
*) = inf = mi .
f(x*) = inf f(x) = min f(x)
This is nonetheless that x* is a minimiser of f. O

2.2.2. Existence Theorems in Finite Dimensions

In real world applications, especially when using the computer, no one has infi-
nite dimensional spaces. Therefore, we might not need such restrictive conditions
for the existence of a minimiser. The requirement of properness is obviously nec-
essary in any case and can not be skipped. Also the coercivity is necessary, as we
have seen in Example 2.2.2. But let us see if the other conditions might be relaxed
and have a look at the work of Rockafellar and Wets [1991].

Theorem 2.2.7 (minimisation in finite dimensional spaces, Rockafellar and Wets
[1991, page 11]). Let f : RM — Ry be a lower semicontinuous, coercive and proper
function. Then the minimisation problem minycx f(x) has a solution in RM.

In finite dimensional spaces weak lower semicontinuity is the same as lower
semicontinuity as a sequence is weak convergent if and only if it is norm conver-
gent. Only the boundedness from below might be skipped since it comes automi-
cally from the other conditions using the Heine-Borel theorem.

To complete this section we add a third version of an existence theorem for
minimisation problems. In this case we consider convex minimisation problems
and restrict our function to have only finite values. This constraint does not look
very restrictive but as we see in the following it is quite powerful.

Theorem 2.2.8 (convex minimisation in finite dimensional spaces). Let f : RM —
R be a convex and coercive function. Then the minimisation problem minycx f(x) has a
solution in RM.

Proof. We want to apply Theorem 2.2.7. First of all, our function f is obviously
proper since it is not allowed to have the value co at any point. Secondly finite,
convex functions are continuous, see Rockafellar and Wets [1991, page 61]. There-
fore, f fulfils all conditions of Theorem 2.2.7. O

By comparing this theorem to a similar one provided by Bredies and Lorenz
[2011, page 263] for infinite dimensional convex minimisation problems, we see
that we get this time the lower semicontinuity for free.

2.3. Differential Calculus

2.3.1. Differential Calculus in Infinite Dimensions

Differentiability is an important property in the theory of minimisation problems.
At least for smooth functions f : R — R it is known, that a vanishing derivative
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2. Foundations of Variational Calculus and Convex Analysis

is a necessary condition for the minimiser. In the following we want to state two
notions for differentiability in infinite dimensional spaces which are called Gaiteaux
differentiability and Fréchet differentiability. To complete the introduction we state
some properties of these derivatives and give some simple examples which are
used in the next chapter. This section is mainly based on Schiffler [2010, pages 16
and 17] and Werner [2007, pages 112-126].

Definition 2.3.1 (Gateaux differentiability). Let X,Y be normed spaces and A C X
an open subset. The mapping f : A — Y is called Gateaux differentiable at a point
x* € U if there exists a mapping K € L(X,Y) so that for every x € X

lim |5 [f (x" + hx) = f(x")] = Kx[ly = 0. (23.1)

We denote K by G¢(x*) and call it the Gateaux derivative of f in x*. f is called Gateaux
differentiable if it is Gateaux differentiable at any point x* € A.

Proposition 2.3.2 (properties of Gateaux differentiability, Werner [2007, page
120,121]). Let X, Y be normed spaces, A C X an open subset and f,g : A — Y are
Gateaux differentiable at x* € A.

1. sum rule: The mapping f + g is Giteaux differentiable at x* € A and the deriva-
tive is given by

Grrg(x") = Gp(x7) + G (x7).

2. scalar multiplication: For any A € R the mapping Af is Gateaux differentiable
at x* € A and the derivative is given by

Grf(x7) = AGs(x").

Theorem 2.3.3 (minimisation with Gateaux differentiability, Werner [2007, page
123]). Let X be a normed space, A C X an open subset and f : A — R Gaiteaux differ-
entiable. If f has a local minima at x* € U, i.e. there exists an open set B C A so that
x* € Band for every x € B there holds f(x*) < f(x), then thereis G¢(x*) = 0.

We have seen that Gateaux differentiability is a nice notion to have a derivative
in infinite dimensions which is similar to the finite dimensional one. But one of
the most important equations is not valid, the chain rule. The chain rule holds for
Fréchet differentiable mappings.

Definition 2.3.4 (Fréchet differentiability). Let X,Y be normed spaces and A C X
an open subset. The mapping f : A — Y is called Fréchet differentiable at a point
x* € A if there exists a mapping K € L(X,Y) so that the convergence as in equation
(2.3.1) is uniform for ||x||x <1, i.e.

fim [[31£(x" + 1) = f(x)] = K-l|os = 0.
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We denote K by F¢(x*) and call it the Fréchet derivative of f in x*. f is called Fréchet
differentiable if it is Fréchet differentiable at any point x* € A.

The norm, which is used in the definition above, is the supremum norm on the
closed unit ball B1(0) C X. It is defined as ||g]le = sup,cp, (o) I§(x) ||y for any
function g : B1(0) — Y.

Remark 2.3.5. Obviously, every Fréchet differentiable mapping is also Gateaux
differentiable. On the contrary, a Gateaux differentiable mapping might fail to be
Fréchet differentiable.

Proposition 2.3.6 (chain rule for Fréchet differentiability, Werner [2007, pages
120 and 121)). Let X, Y, Z be normed spaces and A C X,B C Y open subsets. If f :
A — Y with f(A) C B is Fréchet differentiable at x* € A and g : B — Z is Fréchet
differentiable at f(x*) € B then the mapping go f : A — Z is Fréchet differentiable at
x* and the Fréchet derivative is given by

Foop(x7) = Fg(f(x7)) 0 Fy(x¥).

Example 2.3.7. Let us consider two normed spaces X,Y and an operator K €
L(X,Y). Then the Fréchet derivative of K at any point x* € X is Fx(x*) = K,
because

|$[K(x* + hx) — Kx*] — Fr(x*)x||y = ||} [Kx* + hKx — Kx*] — Kx||y
= [0fly = 0.

Example 2.3.8. As a second example we calculate the Fréchet derivative of |-[|%, :
H — R, where H is a Hilbert space. Using the Hilbert space identity we obtain

i Ll 13+ 20, xag + 2|5, — 127117

— 2(x*, ) + B x5 2%, x) i

i L+ el — [l ]13]

and so we get the Gateaux derivative g\l'l\%{ (x*) = 2(x*, ). But we also want to
know if this is the Fréchet derivative or not.

* * * h—0
sup | [l +hxllF, = |x*[13] — 2", )u| = sup [h]lx[7] < || =0

lxll#<1 [[x[I#<1
Hence, the Fréchet derivative of |-||3, at any point x* is given by T, (x*) =
2(x * , '>7‘l'
Example 2.3.9. The third example is slightly more advanced. For a normed space
X, a Hilbert space H, an operator K € £(X,H) and y € H we calculate the Fréchet

derivative of 1||K(-) — y||3, : X — R. Using the rules from Proposition 2.3.2, the
chain rule from Proposition 2.3.6, both of the examples above and the fact that the
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2. Foundations of Variational Calculus and Convex Analysis

Fréchet derivative of a constant function is zero, we immediately get the Fréchet
derivative at any x* € X as

¥\ 1 *
F1igeyz, ) = 25 Bk -n(¥)

2.3.2. Subdifferential Calculus

The aim of this section is to provide an optimality condition for solving minimi-
sation problems. If we consider a function f : X — R which is Gateaux differ-
entiable, a necessary condition for solving the minimisation problem min.cx f(x)
is given by G¢(x) = 0, see Theorem 2.3.3. But in our application the function is
not smooth, so this notion is not applicable. Therefore, we need another notion of
differentiability which leads us to a slightly different optimality condition.

Let us consider a differentiable function f : RN — R. f is convex if and only if
for all x, x* € RN there holds

f(x) 2 f(x7) +{(Vf(x7), x = x7), (23.2)

see Rockafellar and Wets [1991, page 47]. Since we consider convex functions
which might fail to be differentiable, equation (2.3.2) might be a proper condi-
tion for a new notion of differentiability, called the subdifferential calculus. In this
notion the differential might not be unique, thus, we need the notion of set valued
functions.

Definition 2.3.10 (set valued functions). Let A and B be any sets. The function f :
A — P(B) is called a set valued function, where B(B) denotes the powerset of B. In
the following we write only f : A = B.

Since the values of these functions are sets, we need to have some operations on
sets.

Definition 2.3.11 (addition and scalar multiplication of sets). Let X be a vector
space. For two sets A,B C X and A € R we define

A+B:={x+yeX:x€cAyeB} and A A:={A-xeX:xec A}

With this definition, we can also define the addition and scalar multiplication of
set valued functions. As for usual functions these are defined "pointwise’.

Definition 2.3.12 (addition and scalar multiplication of set valued functions).
Let A be a set and Y a vector space. For set valued functions f,g: A =Y and A € R we
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define
f+g:Az=Y and Af:tA33Y
x = f(x) +g(x) X = Af(x).
Definition 2.3.13 (subgradient, subdifferential). Let X be a normed space and f :
X — R a convex function. w* € X' is called the subgradient of f at a point x* € X if
for every x € X there holds
f(x) > f(x*) + (w", x — x*). (2.3.3)
The subdifferential of of f is the set valued function of : X = X' with
of (x*) = {w* € X' : w* is a subgradient of f in x*} .
Remark 2.3.14. Since equation (2.3.3) is trivial for x € dom f, it is sufficient to
claim this for all x € dom f.

Remark 2.3.15. The subdifferential might be multi-valued, single-valued or empty.
If it is single-valued we do not differ between of (x*) = {w*} and w*. When we
have a closer look at equation (2.3.3) for x* ¢ dom f, we see that this can only
be fulfilled if f is not proper. Hence, for a proper f we have for x* ¢ dom f that
of (x*) = @.

Remark 2.3.16. If we consider a Hilbert space H, we can identify by Riesz repre-
sentation theorem 2.1.9 the subgradient o f (x*) with
{w e H: f(x) > f(x")+ (w", x —x")yVx € H},

where now (-, -)3 denotes the scalar product of H. Therefore, we do not differ
between these sets if H is a Hilbert space.

For later purposes we need to define the multi-valued sign function. To emphasise
the difference between the ordinary sign function and its multi-valued version we
state the common definition of the sign function beforehand, which reads sign :
R—-R

1, fort >0
sign(t) := < 0, fort =0
-1, fort<O.

Definition 2.3.17 (multi-valued sign function). We define the multi-valued sign
function for real numbers S' : R = R as

SH(t) := {{Sign<t)}, for t 7_A 0
[-1,1], fort=0

and the multi-valued sign function for sequences SN : RN — B(R)N

SN((xn)nelN) = (Sl(xn))neﬂ\l‘

as
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To see why we need this and to get familiar with the notion of subdifferentials
we calculate an example.

Example 2.3.18. Lets calculate the subdifferential of | - | : R — R at any x* € R.
The condition which needs to be fulfilled reads for x* = 0,x # 0

x| > w*-x < 1>w"-sign(x).

Therefore, we obtain 0|0 = {w* e R: -1 < w* <1} = [-1,1].
For x* # 0 we define w* := sign(x*) + € and show that ¢ = 0. For all x € R the
condition is

lx| > [x*| + (sign(x™) + &) (x — x") = sign(x™)x + e(x — x¥). (2.3.4)

This is obviously fulfilled for ¢ = 0. Lets consider now & # 0. Assume that the
condition is fulfilled and choose

% :=x* + Lsign(e)|x*| = [sign(x*) + 1 sign(e)]|x*|.
Then, sign(¥) = sign(x*) and for ¥ the condition (2.3.4) reads
|%| > sign(%)% + Lesign(e) [x*| = |%| + Lle|[x*| > |%]

which is a contradiction. Therefore, the subgradient of the absolute value at any
x* # 0is d|x*| = {sign(x*)}. Summarising the results we get for every x* € R

olx*| = S'(x*). (2.3.5)

The next theorem is very import, even if the proof is rather trivial. It gives us
the possibility to describe the solutions of a convex minimisation problem.

Theorem 2.3.19 (optimality condition for convex minimisation problems,
Bredies and Lorenz [2011, page 272]). Let X be a normed space and f : X — Re
a convex function. Then there holds for every x* € X

0 € 9f(x*) & x* € X solves the minimisation problem mi}rgf(x).
xe

Proof.
x* € X solves rxrg)rgf(x) S f(x*) = rgg(\f(x) S VxeX: f(x") < f(x)
S VxeX: f(x")+(0,x—x") < f(x) & 0ecaf(x")
O

Next, we want to state and prove some calculation rules that helps us to calculate
the subdifferentials of more advanced and complicated functions.

First of all, we need a classical theorem because it is necessary for the next proof.
This theorem is a simple consequence of the Hahn-Banach theorem
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Theorem 2.3.20 (Hahn-Banach separation theorem, Werner [2007, page 103]). Let
X be a normed space, A1, Ay C X convex sets, Ay open and A1 N Ay = @. Then there
exists x' € X' so that for every x; € Ay and x; € A

x'(x1) < x'(x2)

is fulfilled.

Remark 2.3.21. This theorem can kf extended to Aj, but then the inequality is not
strict anymore, i.e. for every x1 € Aj and x; € A there holds x'(x1) < x'(x2).

Remark 2.3.22.If A; and A, are non-empty sets, then there exists A € R so
that x'(x1) < A < x/(xp) for every x; € A; and xp € Aj, for instance A :=

SUp,. c4, x'(x1).

Proposition 2.3.23 (calculus rules for subdifferentials, Bredies and Lorenz [2011,
page 279)). Let X, Y denote normed spaces, f, f1, f2 : X — Reo proper, convex functions
and A > 0. Then there are the following rules for calculating subdifferentials.

1. o(Af) = Aof
2.9(fi+ f2) Dofi+0f2
3. If f1 is continuous in any xo € dom f1 Ndom f, :  9(f1 + f2) C9fi +9f2
Proof. Ad 1.: For every A > 0 and x* € X thereis
weIAf)(x") & Af(x) > Af(x*) + (w,x —x*) Vx&domf

& f(x) > f(x*) + (A tw,x —x*) Vxe€domf
S A w e af(x*) & w € Adf(xF).

Ad 2.: For every x* € X, wy € 9f1(x*), wp € 9f2(x*) and x € dom f; N dom f,
there holds

(it f2)(x) = fi(x) + fa(x) = fr(x") + (w1, x — x7) + fo(x") + (w2, x — x¥)
= (f1 + f2)(x") + (w1 + wp, x — x¥)

which is the condition for wy + wy € I(f1 + f2)(x*).
Ad 3.: Let x* € X be an arbitrary chosen point and w* € 9(f1 + f2)(x*). Hence,

fi(x) + fa(x) > f1(x*) + fo(x*) + (w*, x —x*) Vx &€ dom f; Ndom f,.

So x* € dom f; Ndom f, and we can rewrite this condition for every x € dom f; N
dom f, as

filx) = A7) = (", x = x%) > fo(x") = fa(x). (2.3.6)
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By using the auxiliary function f;(x) := f;(x) — (w*, x), which is still convex and
continuous in xp, we can rewrite equation (2.3.6) and get for every x € dom f; N
dom f2

f(x) = fi(x*) = fo(x*) = fa(x). (2.3.7)

We want to find w, € X’ which ‘fits between’ these terms. Let us consider the sets
A1, A, C X x R with

Av={(x0) /i)~ A <6} = {(n i~ i) /i) < 1)

and

Ay i=A{(x ) 1 £ < fo(x") = fa(x)} = {(x, f2(x7) — ) : falx) <t}

We would like to use the Hahn-Banach separation theorem 2.3.20 with the Remark
2.3.21 for A; and A,. We have to verify if they are convex and disjoint. Addition-
ally, we check the non-emptiness, because we want to use Remark 2.3.22 as well.

First, we prove the convexity of Aj. Forevery (x1,t1), (x2,t2) € Ajand A € [0, 1]
there is

A+ (1 =)x2) = A(x) < Af(x) + (1= A)fi(x2) = Ai(x7)

= ALfi(x) = A(D)] + (1 = A)[fi(x2) — A (x)]
<A+ (1= A)ty,

hence, A(x1,t1) + (1 —A)(x2, t2) € Aj, which is nonetheless as the convexity of
Aj1. The proof of the convexity of A, is analogous. Also very easy to verify is the
convexity of the interior of a convex set.

Next, we check the disjointness of these sets. Assume there exists (x,t) € Al N
Aj. But then there holds

) = A7) <t < L) - folx),

which is a contradiction to equation (2.3.7).

The third condition to check is the non-emptiness. For every x € X there is
(%, fi(x) = (")) € A and (x, fo(x") — fo(x)) € Aa.

Finally, we have to prove that A; is not empty. For any ¢ > 0 there is (xo,z0) €
A1, where we have used zp := fi(x0) — f1(x*) +e. Since f is continuous in xy,
there exists § > 0 so that |f;(x) — fi(x0)| < €/2 as long as ||x — xo||x < 8. With
§ :=min(,e/2) we have for every (x,t — f1(x*)) € Bs(xo,20) that

lx0 — x[| + [ f1(x0) + & —t] = []x — xo|| + Hf—fl(x*)] — [fi(x0) = fi(x*) +¢]|

= llx = xol +[[t = Ai(x")] — 20| < <e/2
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and in particular
|f1(x0) +e—t| < ||xo — x|| + |f1(x0) + & —t]| < /2.

Consequently, we have (x,t — f(x*)) € Aj since

Ax) < fi(x) = fi(xo)| + fi(x0)
< fi(x) = fi(x0)| + | f1(x0) te—t|—ett<e/2+e/2—ett=t

<e/2 <e/2

and hence we have proven that A; # @ as (xo,z0) € A;.
By applying Hahn-Bach separation theorem 2.3.20 there exist (xj, t;) € X' x R
and A € R so that for every (x1,t1) € Ay and (xp, t2) € Aj there is

(xg,x1) +toltr — fi(x1)] < A < (x0, 22) + to[fa(x2) — to).
This can be written as

t (2.3.8)
t. (2.3.9)

(x, x) +to[t — A1(x*)] <A Vx € dom fi, fi(x)

<
and (x0, %) + to[f2(x*) —t] > A Vx edomfy, fo(x) <

Now, we want to show that f{; < 0. This is done by contradicting the other cases
to the inequalities (2.3.8) and (2.3.9). Assume that t;, > 0. But then for x = x and
large t,ie. t > fl(x*), we have

lim (3, x0) + Hhlt — (x)] =eo £ A 4

Assume now that t) = 0. But since (xo,29) € A; and (xo, fo(x*) — f2(x0)) € Az
we have the strict inequality by Hahn-Banach separation theorem 2.3.20

(x0, x0) = ((x0,t0), (x0,20)) < ((x0,£0), (x0, f2(x") = fa(x0))) = (xp, x0). 4

This was the major work. After plugging in t = f;(x) in inequality (2.3.8) as well
as t = fo(x) in inequality (2.3.9) we get

fi(x) — fi(x*) > %[—(xo,x> +A] Vxedomf (2.3.10)
and  fo(x") — fa(x) < %[—(xé,x) +A] Vx € dom fo. (2.3.11)

But this is also true for x*, since x* € dom f; N dom f,. Hence, we get A = (x{, x*).

Using w := 3—6x6 we obtain from inequality (2.3.11)

fo(x*) = fa(x) < —(wp,x —x*) Vx & dom fr,
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2. Foundations of Variational Calculus and Convex Analysis

which is equivalent to w, € dfa(x*). On the other hand with w; := w* — w, we
get from inequality (2.3.10)

filx) = A(x") = filx) = A(x") + (W, x — x7)

> —(wy, x — x*) + (W, x — x*) = (w1, x —x*) Vxe&domf,

which is means w; € df;(x*). Concluding we have w* = wy +wp € If;(x*) +
E)fp_(x*). O

Proposition 2.3.24 (subgradient versus gradient, Bredies and Lorenz [2011, page
266]). Let X be a normed space and f : X — Re a convex function. If f is Giteaux
differentiable in x* € dom f then there is

If (x%) = {Gr(x")}.

Proof. Ad'C": Let w* € of (x*). For every x € X, h > 0 there is

(", x) = (", (x" + hx) — x%) < G[f(x" +hx) = f(x")]
and analogously for 1 < 0 sufficiently small so that x* 4+ hx € dom f we have

(", x) = (w", (x" + hx) —2) 2 F[f(x" + hx) = f(x7)].
Consequently, there is

(G5 (x7), ) = lim (" +hx) = f(x)]
< (", x) < Umglf(e" +ha) — f(x)] = (Gr(x"), %)

which yields w* = G¢(x*).

Ad D" Forevery x € X and I € (0, 1] again sufficiently small there is using the
convexity of f

and thus
f(x7) +{Gp(x"), x —x7) = f(x7) +1,jg)1%[f<x* +h(x —x)) = f(x")] < f(x).

This means immediately that G(x*) € df(x*) by using the definition of the sub-
differential. O
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The Elastic Net

In this chapter we apply the theory provided in Chapter 2 to the elastic net func-
tional, often abbreviated by elastic net. This means we show that the elastic net
has a unique minimiser and how the optimality condition using subdifferentials
looks like. Finally, we have a look at further stability properties and at the choice
of the parameters and the elastic net.

First of all, we need a formal definition of the elastic net.

Definition 3.0.1 (elastic net). Let H be a Hilbert space and D € L({?,H) a linear and
continuous operator. For every pair of parameters («, p) € P and data y € H we define
the elastic net ®, 5 : 2 — Reo by

Dy p(x) 1= 3 Dx — yll3; + allxllp + 380 x[I7-

The set of all admissible parameters is
P:=Rj xR":={(a,) ER*:a>0,>0}.
Even if we do not allow f = 0 we sometimes use ®, as an abbreviation for

2IDx =yl + aflx
It is crucial to note that the /! norm has to be extended to ¢? by

x| = Yoo |xal, ifxed?
o o fxan

for any x € ¢2.
Another important fact is that the elastic net can be seen as a stabilised version
of an only ¢! penalised functional. With the scalar product

((x1,y1), (X2, ¥2) )32 = (X1, %2) 3¢ + (Y1, ¥2) 2

H x (2 is also a Hilbert space. Then we can easily rewrite the elastic net functional
as

Py p(x) = 3Dx =yl + allxlln + 387
= 31(Dx, VBx) = (1,0) |12 + allxllr = 31| Dx = Fll3 02 + el ]| -
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3. The Elastic Net

In the last term there is Dx := (Dx, \/Bx) and § := (y,0). Hence, we can use the
whole ¢! minimisation theory for our elastic net functional. Another benefit of this
expression is that it reveals the influence of B. The new operator is injective in any
case, even if D is not.

For further treatment we have to proof that the elastic net has a unique min-
imiser for every given data and parameters.

3.1. Existence and Uniqueness of the Minimiser

To prove a theorem about the existence of a minimiser and its uniqueness, we
first need some basic properties of the elastic net. Since we want to use the direct
method, see Chapter 2, we need lower semicontinuity, coercivity, boundedness
from below and, for the uniqueness, strict convexity. This is all proven in the
following lemmata.

Lemma 3.1.1 (Bredies and Lorenz [2009, page 5]). The elastic net is lower semicon-
tinuous.

Proof. We first prove that ||-||;1 : £2 — R is lower semicontinuous. Let (xF);cn €
(/2)N be a convergent sequence with lim_, |x¥ — x||,2 = 0 and x € £2. We know
that strong convergence implies weak convergence and this implies convergence
of the components, since the unit sequences (6%),cn € ¢2 for every k € IN. This
means that for every n € IN there holds limy ., x& = x*. By Fatou’s lemma 2.1.17
we conclude

o0 o0 o0
|x]| 2 = ,El lx,| = ;]khrrgoxn\ < 11rn1nfng:1 x| = hirlg}fo Il

Next, the functions [|-||%, : #2 — Re and || D(-) — y|3, : #* — Re are continuous
and therefore lower semicontinuous. Consequently, there is

P, p(x) = 5[1Dx — yl3; +allxlln + 3B]xII7

Iiminf | Dx* — y||3, + aliminf [|x*|| 5 + 1Bliminf ||x*||%,

IN

< timinf (3IDx* — y[B, + ol ¥l + 3plI2¥1%) = liminf @, 5 ().
O

Lemma 3.1.2. The elastic net is coercive.

Proof. Let (xF)ren € (£2)N be a sequence with limy_, ||x¥||2 = c0. Then there also
holds lim_., 5B|x¥||%, = oo and

lim CIDa,ﬁ(xk) > lim %,BkaH%Z = oo,
k—o0 k—o0

as the other two summands are non-negative. O
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3.1. Existence and Uniqueness of the Minimiser

Lemma 3.1.3. The elastic net is strictly convex.

Proof. We fulfil this proof in several steps. First, we show the convexity of all terms
of the functional and the strict convexity of the third term, i.e. 1. [|D(-) —y||3, is
convex, 2. ||-|| s is convex and 3. |-||%, is strictly convex. Lemma 2.1.7 gives us that
these properties still hold after the multiplication with their scalars. At the end,
Lemma 2.1.6 implies the strict convexity.

Ad1l.:Letx;,xp € Zand0 < A < 1. Using the abbreviations £; := Dx; —y and
%2 := Dxy — y we prove the convexity by some straight forward calculations.

ID(Ax1 + (1= A)x2) = ylf3 = (AIDx1 = yllF + (1= A)[[Dx2 — yll3)
= A2+ (1= A)R2lF = ARl — (1= A)[[%2113
A2(| 2117, + 24 (1 = A) (%1, 2)3 + (1= AV |21, — Al &l — (1= A) |22
(A% = A)[121 115 + 220 (1 = A) (21, R2) 2 + [(1 = A)? = (1= A)][| %2113,
AMA = 1)[|£1]13, +2A(1 = A) (%1, 22)3 + (1= A)[(1 = A) = 1][| %213,
— A1 = A)[1£1]17, + 22 (1 = A) (%1, 22)m — A(1 = A) || %213,
— A=) (1211 = 2(20 22) 1 + [1£2]17)
— A1 = A)|1#1 — 223
—A(1=A) [|[D(x1 — x2) 17, < 0
>0 >0

Ad 2.: With the use of the triangle inequality it is easy to see that for x1, x, € /!
and 0 < A <1 there holds

[Ax1 + (1 = A)xzflp < [[Axaflo +[[(1 = A)x2flp = Allxafln + (1= A)[[x2| -

If either x; € 2\ ¢! or x, € £\ ¢! the right hand side is co and the convexity is
rather trivial.
Ad 3.: Analogously to 1., we get for any x1,x; € £2,x; # xpand 0 < A < 1

[Ax1 + (1= A)xalf = (Al + (1= A x2llf) = = A1 = A) v — x| <O
N—— ——— ——
>0 >0
O

Theorem 3.1.4. The elastic net has a unique minimiser for every given parameters
(a,B) € Pand datay € H.

Proof. The existence is immediately derived from the direct method, see Theorem
2.2.6. We only have to check the assumptions. X = ¢? is a Hilbert space and
therefore, also a reflexive space. Lemma 3.1.1, 3.1.2 and 3.1.3, state that ®, g is
lower semicontinuous, coercive and strictly convex. Using now Corollary 2.1.23
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3. The Elastic Net

we obtain that @, g is weak lower semicontinuous. Obviously ®, s is bounded
from below by 0, since it is a sum of norms with positive multipliers.

The uniqueness of the minimiser is a simple consequence of the strict convexity
of @, 5. Suppose we have two different minimisers xj, x5 € (?,x] # xj. Directly
by definition of strict convexity and the minising property we have a contradic-
tion.

Py (1) < Pap (337 + 325) < 3Pap(x]) + 3Pup(¥3) < Pap(xy) ¢

3.2. Subdifferential and Optimality Condition

With the help of subdifferential calculus, the optimality condition reads
0e aq)“,‘g (x*)

Our aim is now to calculate the subdifferential of ®, g at any x* € ¢'. Since ®, g
is proper and dom @, g = ¢!, we have for any x* € 2\ ! that 9@, 5 (x*) = @, see
Remark 2.3.15.

Lemma 3.2.1. The subdifferential of ||-||pn : * — Re at any x* € (' is given by
a|x*||p = SN(x*) N £2.

Proof. Let x* € ¢! be arbitrary chosen.

Ad 'C’: Since 2 is a Hilbert space, we use the Riesz representation theorem
2.1.9, see Remark 2.3.16, and get that 9||x*||» C (2. For w* € 9||x*||,n the subdif-
ferential condition reads

o0

Yol = Y x4+ Y wi(xa —x;) Vxe
n=1 n=1 n=1
Plugging in the sequences x - ok = (xp - (5,’2),16]1\1 € (! for every k € IN, where 5§
denotes the Kronecker delta, we obtain

k] > x| + wi (xx — x7),

which is already covered by the one dimensional case in Example 2.3.18. There-
fore, for every k € N there is w; € S!(x}) or equivalent w* € SN(x*). Since
w* € 2 we have w* € SN(x*) N 2.

Ad 'D": Let us consider now any w* € SN(x*) N 2. Then there holds for any
x €/t

[ee]

Z EAES Z sign(xn)xn + Z (sign(x,’i) — Wy )X,
n=1

n=1 n=1

=0

(o] (o] (o]
Wy + ) (sign(xg) —wi)xy, = Y [xal + ) wi(xn — x3,),
1 n=1 n=1 n=1

>

agk

n

which means w* € d||x*|| . O
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3.2. Subdifferential and Optimality Condition

Lemma 3.2.2. The subdifferential of the elastic net is given by
0D, 5(x) = D'(Dx —y) +aSN(x) N 2 + Bx.

Proof. First of all, we calculate the Gateaux derivatives of 3[|D(-) — y[|3, and 38||-||%
at any x € 2. From the Examples 2.3.8 and 2.3.9 we obtain the derivatives by
plugging in X = (2 as

— (D'(Dx—y),-
Tipe)-yg, X = (P(Px=y))e and Gpyy )

(x) = (Bx, ) 2.

By using Proposition 2.3.24, we get the corresponding subderivatives, since the
interior of the domain of these mappings is the whole ¢2. In addition, we are in
a Hilbert space and can identify by Riesz representation theorem 2.1.9 the subdif-
ferentials by D’(Dx — y) and Bx respectively.

Secondly, the subdifferential of the ¢! norm is obtained from Lemma 3.2.1.

To conclude the proof we have to stick all three derivatives together by using
Proposition 2.3.23. It can be used since the first two summands are continuous in
2. O

Theorem 3.2.3. The optimality condition of the minimiser of the elastic net, which is
necessary and sufficient, is given by

—(D'D + BId)x + D'y € aSN(x). (3.2.1)

Proof. The optimality condition in terms of the subdifferential is
0€ 0D, 5(x) = D'(Dx —y) +aSN(x) N £* + Bx,
see Theorem 2.3.19 and Lemma 3.2.2, which is equivalent to
—(D'D + BId)x + D'y € aSN(x) N ¢~

Since —(D'D + BId)x + D'y € (2 for every x € £? the condition can be simplified
to the one which we wanted to prove. O

The optimality condition can be splitted into two different conditions by exploit-
ing the definition of the multivalued sign function.

' D'Dx—D'yln, < a, x, =0 (3.2.2)

[—(D'D+Bld)x+D'y], = asign(x,), x,#0 (3.2.3)

Here we have shortened for a sequence x the absolute value of a component |x,,|
by |x[,.

With the notion of sparsity, the second condition shows us an important prop-
erty of the minimiser.
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3. The Elastic Net

Definition 3.2.4 (sparsity). A sequence x € RN is called sparse if there exists N € IN
so that for any n > N there is x, = 0 or equivalent

x[| ==Y |xu|” = #{n € N : x, # 0} < co.
n=1

Theorem 3.2.5 (Schiffler [2010, page 28]). If « > O, then the minimiser of the elastic
net is sparse.

Proof. Assume that the minimiser of the elastic net x* € ¢! is not sparse, then there
are infinitely many n € IN so that x;, # 0 and from the optimality condition (3.2.3)
we get immediately

| —(D'D + BId)x* + D'y|, = «
for those n. But then there is

o0 = | =(D'D + pId)x" + D'y||2
< IDDllx" ez + Bllx" 2 + 1D [yl <oo0. 4

3.3. The Parameters of the Elastic Net

3.3.1. Influence of the Parameters

We have proven that the elastic net has a unique minimiser for any given param-
eters and data, which we denote by x, 4, i.e.

Xyp := argmin &, g(x).

xe?

Of course the minimiser depends also on the data y, but since we want to focus
only on the influence of the parameters we suppress this in the notation.

In many applications it is useful to have an insight about the influences of the
parameters. The most important result is summarised in the following theorem.

Theorem 3.3.1 (stability of the minimiser, Jin et al. [2009, page 2]). For every data
y € H the mapping ¥ : P — (%, («, B) — X, is continuous.

Proof. This proof is based on Jin et al. [2009, page 2], but the second part varies in
some important details.

We consider the converging sequence (ay, B )nen € PN with limy, e (ay, Br) =
(a,B) € P and denote the corresponding sequence of minimisers by x" := x,, g,
and x* := x, g. This proof is devided in two parts. First, we show that w-lim,, . x"" =
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3.3. The Parameters of the Elastic Net

x* and second, lim;, .« ||x"||2 = ||x*||2. Finally, the use of Lemma 2.1.16 com-
pletes the proof.

Ad 1.: Every x" is the minimiser of the corresponding elastic net and the se-
quence (B,)neN converges, hence,

3Bullx" |72 < @a, p,(x") < Pa,p,(0) = 3llyll7:

and therefore,

1 _1
[x" |2 < B * lylle < sup Bu?[lyll2 < oo.
nelN

Since the sequence (x"),cnN is uniformly bounded in the reflexive space ¢, Theo-
rem 2.2.1 implies that there exists a weak convergent subsequence (x7()), cn. We
denote the weak limit by x* € (2. Similar to the lower semicontinuity, Lemma
3.1.1, we observe

D, 5(x") < 3 liminf DX — |13, + alim inf || 27| 1 + ,mamf |22,
n—oo
< %liminf DX — 13, +h,£rl>1£f“ ||x’7 N + > hmmfﬁ,7 NEL )12,
h,ﬂlo?fq) LBy >(x’7( ).

Using some minimising properties and the estimation above we get

llm Sup q)“q(n)/,Biy(n) (xn(n)) S hm Sup Q“V(Vl)’ﬁﬂ(") <x*)

n—oo n—oo

=Dy p(x") < Dy p(x”) < liminf @, ﬁqw(x’?(n))l

n—oo

which implies @, 5 (x”) = @, g(x*). Consequently, x* = x* as the elastic net has
a unique minimiser. Moreover, every subsequence of the minimising sequence
(x")nen has a subsequence weakly converging to x*, thus, w-lim,_. x" = x*
what we wanted to prove.

Ad 2.: Next, we show that lim,,_,c || x"||,2 = ||x*]| 2, but since ||-|| 2 is weak lower
semicontinuous it is sufficient to show that limsup, . [|x"||2 < ||x*]| 2.

Assume this is not true, hence, there exists a constant ¢ := limsup,,_,  ||x" H‘Z;z >
|x*[|% and a weakly convergent subsequence (x7("),,ciy so that w-lim,, e x7(") =

N7 =

x* and lim,, . ||x7("]||2, = c. Then there is, using the minimising property and the
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3. The Elastic Net

weak lower semicontinuity,
timinf 31D~y + a7
= liminf 3 D21 — y | + ) 570

+li£rli£f%ﬁ,7 |27 ||g2—nhm 1By X712,

/

=0
liﬂglf%v(nwﬁnm(ﬂ(n)) —2fc < hﬂ%ﬂlf@“wwﬁn(m("*) — 3Pc

= lim @ 5, (¥") = 38c = 3| Dx" —ylf +allx*[ln + 3B (2|7 — )

<HIDE gl + il

< Timinf 3 D)~y + a7

< timinf § DY) — y|3 + a0 .

U
Remark 3.3.2. Every minimiser of the elastic net is in 1, hence, Im(Y) C 23
Corollary 3.3.3. The functions Fg, Fi, F, : P — IR defined by
Fo(a,B) := Pup(xup),  Fila,p):=xuplln and  Fa(w,p) := [xuplle

are continuous.
Proof. We can rewrite the functions as Fp = ®yp|n 0¥, Fi = |[|-||pn]p oY and
Fy = [|*]l2] ;2 © ¥, thus, they are all compositions of continuous functions. O

We have considered the cases that both parameters are positive and the one with
vanishing «. Let us now consider the case that p is vanishing. Since ®,( is not
strictly convex, we can not expect that the minimiser is unique. Hence for any
7 > 0 we denote the minimiser of @y, which also minimises /||| + [|-[|%, b

Y
xtx,O‘

Proposition 3.3.4 (8 | 0, Jin et al. [2009, page 4]). Let («y, ,Bn)neN E PN be a conver-
gent sequence with limy, (&, Br) = (2,0), & > 0 and lim,,_,co % /5 = > 0. Then
there is

lim x,,, = x1, inl>.

n—oo

Proof. Let us use the notation x" := x,,4, and x* := xzo. We first prove that

w-lim, e ¥ = x* and secondly, lim, .« ||x"||s = ||x*||,2. Finally, from Lemma
2.1.18 we derive

. no__ % . no__ % _
lim [Jx" — x|z < lim []x" — x"[|n =0,
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3.3. The Parameters of the Elastic Net

which completes the proof.
Ad 1.: Analogously to the proof of Theorem 3.3.1, there exists a subsequence

(x1M), N weakly converging to x¥. Since x7("), x* are minimisers and Byny >0
o —K

there is with 7, := fg"_)
17 n

Yull X"+ 3127 1F = B [y o 127 2 4 3By 17172 — |70 1]

= By o) [Pty (X1™) = @ag (x7)]
< By [Py () = P ()] = [l + Fl17

Using these inequation as well as the weak lower semicontinuity and the defini-
tion of 7y leads to

x| o+ )% < lim 7, lim inf |27 + 4 lim inf 2172,
< 11m1nf'yon’7 Mo+ 2712,
< timinf ||l g + 3l 1% = vl o + 310007

Since the minimising element of y||-|| 1 4 5||-|2, is unique, we have x* = x*. With
the same arguments as at the proof of Theorem 3.3.1 we conclude w-lim,, ., x" =
x*.

Ad 2.: As at the previous proof, it is sufficient to show that limsup,,_  [[x"|n <
||x*|| ;1. We assume that this is not fulfilled. Therefore, there exists a constant ¢ :=
limsup,, . [|x"]|s > Hx |+ and subsequence (x7(")), i so that w-lim,, e x1(") =

x* and a lim,,_, || x1(n H o = c¢. Then we obtain by using the minimising property
iminf L n(n) _
lim inf 5 | Dx ylI3,

— liminf} n(n) _ |2 imi n(my, — n(n
llﬂgszDx J/HH"‘hﬂg}f”‘ yllx e lim a, mllx e

=0
+liminf 16, 7" %

/

=0

< hmmeI) By (x1M) — e < limicgﬁq)aw),ﬁv(n)(x*) —ac

(n)
= lim &, 4 (n)(x ) —ac =3[ Dx" =yl + a ([lx"[ln —c)

n—o0o

< EHDx - ]/HH < liminf%HDxW(”) - yH%{ 7
n—oo
U

Remark 3.3.5. The import case that «, = « > 0 and B, | 0 is included in the
above proposition. But there are other cases which might be interesting, at least
for scientific reasons. These are for examplea,, T &« > 0,a, | Oaswellasa, | « >0

with limy, ”‘”ﬁ;“ =00, e.g &y i=a+ 1B, = % These are not yet considered.

35



3. The Elastic Net

Additionally to the continuity of Fp, we can prove further smoothness of this
function.

Theorem 3.3.6 (Jin et al. [2009, page 2]). The function Fy is total differentiable in IP,
especially

duFo(a,B) = ||xaplln and OpFo(a,B) = 1|xapl|%-

Proof. We prove the claim in two steps. First, we show that 0, Fo(a, B) = ||xs/n
and second, dgFo(a, B) = 5||xa,pl/%. The continuity of the partial derivatives, see
Corollary 3.3.3, completes the proof.
Let («, B) € IP be arbitrary chosen. For i € R and small enough so thata 44 > 0
there is by using the minimising property
Dy p(Xainp) = Pap(Xap) 20 and Py p(Xasnp) — Pasnp(¥ap) < 0.
Hence, there is with the identity @, 5(x) = Py p(x) + I/ x||n

Fo(a +h,p) — Fo(a, B) = Painp(Xarnp) — Pup(Xep)
= Dy p(Xatnp) — Pop(Xap) + | Xutnplle
> hl|xXainpllo
and
Fo(a+h,p) — Fo(a, ) = Poinp(Xasnp) — Pup(Xap)

= Dy p(Xusnp) — Posnp(Xa,p) + | Xapll
< hl[xa,pl -

For h > 0 we derive by dividing by h

%utnpllon < f[Fo(a+hB) — Fo(a, B)] < ||xaplln
and respectively for i < 0

lxupller < f[Fo(a+h, B) — Fo(a, B)] < || Xasnpllo

Taking the limit and using Corollary 3.3.3 about the continuity of ||x, g/, in &
implies 0y Fo(a, B) = ||Xapll -
Similar to the first part there is

Fo(a,B+h) — Fo(a, B) = Py p(xupin) — Pop(Xap) + 13 || Xa prnll72
> Lh||xapenlls

F¢(‘X':B + h) - F<1><D‘/ IB) = CI)!X-I—h,ﬁ('xDé,ﬁ-i'h) - szx—l—h,ﬁ(xtx,ﬁ) + h% szx,ﬁ—&-h”;h
< %thrx,ﬁH%Z/

hence, dgFo(, B) = %Hxa,ﬁniz' -
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3.3. The Parameters of the Elastic Net

As for the function Fp we can derive further results for F; and F,. This is sum-
marised in the following proposition.

Proposition 3.3.7. The function F is monotonically decreasing in a and F, is monotoni-
cally decreasing in B, i.e.

1. For every B > O there is o <ay = Fi(ag,B) > Fi(az, B) and
2. for every a > O there is B1<B2 = Fl(ap1)>FE(a B2).

Proof. We prove only the first part, since the proof ot the second part is analogue.
This proof is a simple consequence of an idea, which is already exploited in the
previous proof. This is for any & > 0 there holds

D p(x) = P p(x) + bl x| .
Then using the minimising property, there is for any & > 0

Fi(a+h,B) = [|Xasnplln = 1" [Pasnp(Xasnp) — Pap(Xainp)]
< B [ @ p(Xup) — Pp(Xatnp)]
< hil [q>a+h,[3<xﬂé,,3) - szx,ﬁ<xa,ﬁ)] = hilhuxa,ﬁHél = Pl (0‘/ ,B)

O

Remark 3.3.8. This proposition means that the ¢! norm of the minimiser monoton-
ically decreases in « and the 2 norm of the minimiser monotonically decreases in
B.

Remark 3.3.9. For any 8 > 0 and upper boundary ¥ > 0 we can define the func-
tion Fi g : [0,&] — R,a — Fi(a,8). As we have seen already, this function is
monotonically decreasing and continuous, hence, its derivative exists almost ev-
erywhere [Elstrodt, 2004, page 299] and d,F; g € L! (0,), even if we do not know
an explicit expression of it. In the same way this can be obtained for F,.

3.3.2. The Choice of the Parameters

The choice of the parameter a and B is a rather difficult question, but there are two
things what we have to keep in mind when choosing the parameters.

On the one hand, as we have seen above, the influence of the parameters to
the solution of the minimising problem is not chaotic, i.e. some mappings are
continuous, differentiable or monotonic. On the other hand, we are looking for a
solution of a linear equation, thus, we do not want to force the minimiser to be too
far away from a real solution if any exists.

Next, we prove that if we choose the parameters too large, the solution tends to
zero. But the way how it tends to zero is different for the parameters « and .
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3. The Elastic Net

Theorem 3.3.10 (Schiffler [2010, page 28]). There exists an upper bound w,q, on the
choice of w in the sense that & > wyqy if and only if the minimiser of the elastic net is 0.

Proof. From the optimality condition (3.2.2) we observe that 0 is a minimiser if and
only if for all n € N there is |D'y|, < a. The smallest a« which fulfils this is
obviously &y := max,eN |D'y|n.

The only remaining question is the existence of the maximum. We are looking
at the sequence x* € (? with x} := |D'y|,. In the trivial case x* = 0 then a,y = 0.
Otherwise there exists a smallest n € IN so that x; > 0. Since x* € ¢? there exists
7 € N so that x: > x: for all n > 7, hence, &5 = Max,<n<7 |D'y|,. But here we
consider only finitely many values and thus ;. exists. O

The set of all admissible or rather senseful parameters is bounded in the direc-
tion of &, as we have proven above. In the direction of f we are only able to prove
that the solution tends to zero, but without any sharp boundary.

Lemma 3.3.11. Let (&, B )nen € PN be a sequence of parameters with lim,, e By = 0.
Then the sequence of minimisers (o5, )nen € (¢2)N converges to the zero solution in (2.

Proof. This can be proven easily in the following way. When we denote the min-
imiser of ®, g, by x", we have for any n € IN

3Bull "% < Pup, (x") < Pup, (0) = 3]lylI7
and thus, [|x"||7, < B, ![|y||%,, which leads to
im [l2"||7 < lim g, |yl = 0.

O

To summarise the results and to give an overview of all admissible parameters
this set is shown in Figure 3.1.

B Figure 3.1: The set of all admissi-
ble parameters. On the right hand
side there is a boundary, since every
solution with parameters inside the
marked area, i.e. a is larger than a,,y,
is the zero solution. In the direction
of B the solution also tends to zero but
without any sharp boundary.

[XUI(I,\'
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Regularised Feature Sign
Search

In this chapter we propose an algorithm to solve the elastic net. When treating
the elastic net as a ¢! penalised functional there are plenty of algorithms which
solve this problem. The Feature Sign Search (FSS), introduced by Lee et al. [2007],
showed very often a good performance. But there are problems with rank de-
ficient matrices, as for example when the matrix has more columns than rows,
which is the case in our application. In such cases, the FSS may try to invert a
singular matrix.

The algorithm we would like to use is called Regularised Feature Sign Search
(RESS). It is a regularised, i.e. the inversion is stabilised, version of the FSS. It was
tirst proposed by Jin et al. [2009]. To prove a result on convergency, we can only
consider finite dimensional problems, i.e. D : RN — RM and y € RM. But since
real examples, i.e. when using a computer, are always finite, this is no drawback
for this algorithm.

To state this algorithm we need the notion of consistency and have to use an
auxiliary functional which is differentiable. These are introduced in the following
section.

4.1. Consistency

For simplicity of the formulas some new notations are needed. We denote the
set of all possible indices of x € RN, which is {1,...,N}, by N. For every set
I' C N the complement N \ T is written as I'.. The restriction of a column vector
x = (x4)nen on the active set T C N is defined component-wise or row-wise by
xp = (%u)ner. Analogously, we define the restriction of a matrix column-wise,
ie for D = (dy,...,dn) = (dy)nen, where d, € RM denotes the columns of the
matrix D, there is Dy := (d,,),er. Lately we denote the residual by R(x) := Dx —y.

Definition 4.1.1 (consistency). Let T C N, x € RN and 0 € {—1,0,1}N. The triple
(T, x,0) is called consistent if xp = 0p = 0and for every n € T there is

sign(x,) =6, # 0.

With the notion of consistency we can rewrite the already splitted optimality
conditions.
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4. Regularised Feature Sign Search

Proposition 4.1.2 (Optimality Condition and Consistency). Let (T, x,0) be a
consistent triple. Then x is the minimiser of the elastic net if and only if

max |(dy, R(x))| < « (01)
nel.
and  xp =(D}Dr + BId) Y (Dfy — aby). (02)

Proof. The optimality conditions (3.2.2) and (3.2.3) are
| D'Dx —D'yl, < g, ifx, =0 (4.1.1)
and [—(D'D+Bld)x+D'y], = asign(x,), ifx, #O0. (4.1.2)

From the definition of consistency we obtain that x,, # 0if and only if n € T". Thus,
for any n € I'c there is by using (4.1.1)

& > |D'Dx — D'y|, = [D'(Dx - y)|s = [D'R(x),.

By definition of matrix vector multiplication and of the Euclidean scalar product
there is for any n € I';

a > |D'R(x)|, = [{dn, R(x))],

which is fulfilled if and only if (O1) holds.

It is rather trivial to obtain the second optimality condition. Since the active set
I' is the set of the indices corresponding to all non-zero components, we can write
(4.1.2) as an equation of vectors as

—(DrDr + Bld)xr + Dry = afy.

Forany § > 0 the matrix DDy + BId is invertible, thus, this equation is equivalent
to (O2). O

Definition 4.1.3 (auxiliary functional). For any T C N and 6 € {—1,0,1}N we
define the auxiliary functional Z : Rl — R by

Bor(z) = 3| Drz = ylI3 + a{6r, 2) + 3Bll215-
Remark 4.1.4. The auxiliary functional is related to the elastic net by
Eor(xr) < Py p(x)

for any triple (T, x,0). Equality holds if and only if the triple is consistent.

The auxiliary functional is differentiable in z for any fixed 6 and I'. In addition,
it is strictly convex as a sum of two convex and one strictly convex function, see
Lemma 2.1.6. Combining these, the unique solution of the minimisation problem
min, i Zg,r(2) is given by the solution of

VrEer(z) := (9z,E6r(2)) yer = 0.

40



4.2. The Algorithm

Lemma 4.1.5. Let (T, x, ) be a triple. Then x fulfils the optimality condition (O2) if and
only if VrEpr(xp) = 0.

Proof. For every n* € I there is, using 0, (Drxp)m = 9p+ Lper(dn)mXn = (du*)m,

0

du+Eor(xr)
M

nel nel

I\JIH

m

M
Z DFxF - y)m + abys + ‘an*

m=
<dn Drxr —y) + aby- + pxy-
= (dp+, R(x)) + abp + Bxy.

(4.1.3)

This can also be written in a vector equation as

0= VrZgr(xr) = Dr(Drxr — y) + abr + pxp
and solved by xp = (D}Dy. + BId) "} (Dfy — aby). O
4.2. The Algorithm

The main idea of the algorithm is the following. According to Proposition 4.1.2,
we want to find a consistent triple so that the optimality conditions (O1) and (O2)
are fulfilled. But in both of these conditions there hides a problem. First, how
large do we have to choose the active set so that (O1) is fulfilled? Second, the right
hand side of (O2) depends on the sign of the solution whereas the left hand side is
the solution itself. This algorithm tries to guess how the active set looks like and
how the signs of the solution are. In other words this algorithm is looking for the
signs of the features, which are needed for the solution.

The algorithm with all the details is provided in Table 4.1. Additionally, we
discribe the algorithm roughly. The guesses of the active set and the sign vector
are done iteratively. Since we are looking for a sparse solution, i.e. with lots of zero
components, our first guess is by default that the active set is empty. If this was
not the correct solution we have to increase our active set. We increase the active
set by the index, which violates the optimality condition (O1) most. In addition,
we guess what the sign of the solution at our new index is. This guess looks rather
arbitrary but, as we will prove in Lemma 4.3.3, it is the correct guess. Next, we
solve the optimality condition (O2) on the active set, which depends on our chosen
active set and sign vector. Since for a sparse solution the active set is very small,
the system of linear equations we need to solve is small as well.

In the whole algorithm it is very important that the current triple is consistent.
Hence, before we have a look if our calculated solution is the solution of the elastic
net we have to check if the solution is consistent or not. If this is not the case it
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4. Regularised Feature Sign Search

Table 4.1.: The algorithm of the RFSS. <’ means that the variable on the left hand
side gets the value of the right hand side.

initialize

601) fulfilled?

. ;.
: ?2)
line search o Qon&:tenb !

Hsolve problemJ 33

|
)

/ no

terminate

initialise

Set (T, x,0)° «— (©,0,0) and k « 0.

next pattern

Increase k < k + 1. We take the index which is violating (O1)
the most, i.e. fits best to the residual,

n* € argmax|(d,, R(x*71))|
neTk

and update the active set T¥ « T*~1U {n*}. Then the sign
vector is updated by 0% « 65~1, 1 £ n* and

0k, «— —sign(d,-, R(x*"1)).

solve problem

k

e < 0

Solve the minimisation problem on the active set by x

and _
(DDp + BId) " (Dl — afy).

line search

Increase k < k + 1. Find the smallest A € (0,1] so that for
xK e xK=2 4+ A(xF=1 — x¥=2) there exists an index m* with

sign(xk,.) # sign(x*-2).

Remove the index from the active set IT* « T*~1\ {m*} and
update the sign vector by 6% « 65~1, 1 £ m* and 6% — 0.

update

Increase k «+— k + 1 and update the active set by I k151 as
well as the sign vector by ok — k-1,
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4.3. Proof of Convergency

has to be fixed. Otherwise, we can iteratively continue with the already described
procedure.

Overall it is not easy to see why this algorithm really does what it has to and
that it converges to the solution of the elastic net. In fact, it is not obvious that it
converges at all. This is proven in the next section.

Remark 4.2.1. Any other consistent triple would also be possible for initialisation
if we only modify the entrance behaviour slightly.

4.3. Proof of Convergency

Before we can start proving the convergency of the algorithm, we have to check
that the algorithm is well-defined. There are plenty of assumptions that need to
be fulfilled so that the next step is useful. In the following, we show that these
assumptions are indeed fulfilled if the starting triple is the trivial one (®,0,0). As
mentionend above any other consistent starting triple is also allowed when we
extend the entrance behaviour of the algorithm slightly. Here we only proof the
well-definedness for the trivial starting triple.

The abbreviations Zf := Ege e and (T, x, )k := (T*, x,6%) help us to guarantee
readability and to shorten the expressions.

Lemma 4.3.1. The inner loop guarantees that (O2) is fulfilled.

Proof. There are two ways out of the inner loop. First, we leave directly after "solve
problem” but then (O2) is fulfilled, since it was calculated according to solve this
equation. The second way out of the inner loop is when (O2) is fulfilled after the
"line search’. O

Corollary 4.3.2. At the beginning of any iteration of the outer loop, i.e. before next
pattern’, the optimality condition (O2) is fulfilled.

Proof. The initial triple fulfils trivially the optimal condition (O2) since I 0is empty.
After any iteration the condition is also fulfilled, see Lemma 4.3.1. O

Lemma 4.3.3 (Schiffler, 2010, page 47). We have predicted sign(xX.) in ‘next pattern’
correctly, i.e. 65, := — sign{d,+, R(x*~1)) = sign(x£.).

Proof. Let (T, x, 0)* denote the triple after “solve problem’ and (T, x, 8)k! the one
before choosing ‘next pattern’. Since x¥ is optimal for Z there is £ (xF) < EF(xF1)
and as a result of the convexity there is for every 0 < h <1

ER (KT 4 m[ak — 1) < hEF(HF) 4 (1 — h)EF (AT < BF (R, (4.3.1)

We also know that |(d,+, R*"1)| > a and x*-! = 0. Using equation (4.1.3) leads
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4. Regularised Feature Sign Search

to

(
((dy, R(xF71)) 4 abt)) (4.3.2)

sign (9, EF (k1)) = sign((dy, R(xF 1)) + abk. + pxkT)
= sign (
= sign(d,, R(x*1)) = —6F.,
because this is how 6%, is chosen .
Since 9’12,{,1 = Gfk__ll and x*~1is optimal for 21 see Corollary 4.3.2, there is

Vi & (k1) = Va8 1 (1 = o. (4.3.3)

Assume now that we have predicted the sign wrong, i.e. sign(xk.) # 6~ or
9',2* . x',;* < 0. Using the Taylor series expansion with a sufficiently small stepsize h
we obtain

(43.1)
> Ek<xk_1 + h[xk . xk—l]) o Ek<xk_1)

= (VIR ), o 4 h[ak — A1) — 21 4 0(h?)
= W(VpE(xF 1), xk — 21 4 O(1?)

“23 19, BF (1) xk, + O(12)

"2 o BT 6 ) +O0P) > 0.
—_—————

>0 <0

Lemma 4.3.4. The 'line search’ always finds a change of the sign if the triple of the previ-
ous iteration, either inner or outer loop, was consistent.

Proof. The current setting is the following. The triple (T, x, 9)"‘1, obtained from
the previous iteration of the inner or outer loop, is by assumption consistent. We
also know that (T, x, G)k is inconsistent since we have not left the inner loop.

We have to consider two different cases. First, this is the first iteration of the
inner loop and second, it is not.

Ad 1.: We know that TF = T*=1 U {n*}, 68 = 65~ for n € "1 and sign(xk.) =

9§*, see Lemma 4.3.3. Then there exists an index n € T~ so that

sign(xk) # 6% = 0571 = sign(xk71).

Ad 2.: In this case, there is T¥ = T¥~1 gk = gk~ and hence, there is n € "1 so
that

sign(xk) # 6% = 0571 = sign(xk71).

In any case there exists a change of the sign. O

44



4.3. Proof of Convergency

Proposition 4.3.5. The inner loop guarantees that the resulting triple is consistent.

Proof. The resulting triple of the inner loop (T, x, §)F which might not be consistent
is that which is made by ‘line search’.

Since the initial triple is consistent we prove this by induction. Assume that the
triple of the previous iteration (T, x,0)*~2 is consistent.

We have to differ two situations. First, this is the first iteration of the inner loop
and second, it is not.

Ad 1.: We know that the new index n* is consistent, i.e. 9,’2:1 = sign(xf71). By
definition of (T, x,8)* we have for any n € TX\ {n*} that sign( k) = 51gn( xk=2) =
0k=2 = 6. Moreover, we have proven that sign( k) = 0., see Lemma 43.3.
Overall, we have that for any n € T¥ there is sign(x ) = 6. Furthermore xk. =0

and 0%. = 0, which correspond to the removed index m*, hence, the trlple is
consistent.

Ad 2.: This case is analogue to the previous one. The only difference is that there
is no new index n*. O

Theorem 4.3.6 (Schiffler [2010, page 46]). The function ®, g(x*) is strictly decreasing
in k, i.e. every iteration of the inner loop strictly reduces the value of the functional.

Proof. We know that the resulting triple of the last inner iteration (T, x, )1 is
consistent, see Proposition 4.3. 5 If this is the first iteration of the inner loop there
isTF =Tk1u{n*}, 0k = erk L and x¥71 = 0, hence,

7 rk
Py (241 = BT ()
“U Y Ayl ¥ 6l Y P
nerk-1 nerk-1 nerk-1
=3I Y AT =yl Y 6 48 Y
nerk nerk nerk
= Ek(xk_l).

In any other iteration there is T = I'*~1, ¥ = §*~1 and immediately ®, plx X1y =
EF1(xk=1) = EX(x¥1). Note that in any case we have

D p(xF 1) = EF(F). (4.3.4)

Additionally, we know that (T¥, x=1, 6% violates (O2) but (T*, x¥,6F) does not
or in other words x¥ is optimal for Zk and x*1 is not, thus,

2R (xR < BR (kD). (4.3.5)

Next, we consider two different cases. First, the triple after "solve problem’ is
consistent and we terminate the inner loop and second, it is not.
Ad 1.: If the resulting triple is consistent we have

(4.3.5)
by m < Ek

—_ _ (4.3.4) _
¢a,ﬁ<xk) :‘i‘k< (x g 1) = CD&,ﬁ("k 1)-

45



4. Regularised Feature Sign Search

Ad 2.: In this case we have done a line search so that (T, x, G)k+l is consistent.
By the convexity of ZF and x*1 = 0 there is

qD“/'B <xk+1) _ Ek—‘rl(xk-l—l) — Ek(xk—‘rl) — Ek(}\xk 4 (1 _ A)xk_l)

< AT+ (1- NS
@35 . P ke k1, (434 _
< AEFFDY (1 - ) ER(FY) = BT ¢29 q’a,ﬁ<xk b.

O

Theorem 4.3.7 (Schiffler [2010, page 44]). The RESS converges globally to the unique
minimiser of the elastic net in finitely many steps.

Proof. We know from Theorem 4.3.6 that every iteration of the inner loop strictly
decreases the value of ®, (x*). Additionally, we know that the next iterate x*1
depends only on the active set, hence an active set does not occur twice. Especially
there are no loops. The RFSS converges in finitely many steps, since there are only
finitely many possibilities for the active set (in fact there are 2N possibilities). [
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Analysis of Sea Floor
Pressure Data

This chapter is devoted to the application of sparsity in the analysis of sea floor
pressure data. In Section 5.1, we have a look at how sparsity by means of the
elastic net can be used to analyse these data sets. In addition, four other methods,
namely Harmonic Decomposition, Wavelet Decomposition, EMD and EEMD, are
applied to these data sets as well. These methods are described in Section 5.2.
Finally, the results of all five methods are presented in Section 5.3.

5.1. Sparse Decomposition

Sparse Decomposition contains several steps to obtain a solution to the decom-
position problem. First, one has to find a proper dictionary which depends a lot
on the application. Next, £! minimisation by RFSS is used to select which pattern
in the dictionary are needed for a suitable decomposition. At last, we perform (2
minimisation with the chosen pattern to get the best fitting solution, i.e. minimis-

lng
|Drxr — yll5 + Bllxrll3,

by xp = (D} Dy + BId) 1D}y with a small B > 0 to ensure the invertibility of the
matrix.

Let us have a closer look at the choices needed for Sparse Decomposition. These
are the choice of the dictionary and of the parameters, in particular the sparsity
parameter .

5.1.1. Dictionary

The choice of the dictionary is an important step to analyse sea floor pressure data.
Every effect we want to have in our decomposition has to be in the dictionary as
a single pattern or as a superposition of patterns which represents this effect.

We have chosen harmonics and wavelets of a large scale to represent the tides.
Short time effects, like earthquakes or errors in the measurement, are represented
very well by wavelets of a small scale and by peaks. The long time feature or
trend detection is done with blocks of constant pressure and a global linear trend
because these pattern do neither have a high resolution in time to represent short
time features nor do they represent tidal effects. The chosen pattern are shown in
Figure 5.1.
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5. Analysis of Sea Floor Pressure Data

(a) harmonics (b) wavelets (c) peaks
———
—_—0 *—
(d) blocks (e) linear trend

Figure 5.1.: The dictionary used by Sparse Decomposition contains harmonics and
wavelets for tidal constituents, wavelets and peaks for short time components as
well as blocks and a linear trend for the long time components.

First of all, we have a closer look at the harmonic components. The Fourier ba-
sis is the natural choice to represent the tides. If we want that our dictionary is
similar to the tidal components, we also have to use translations of those harmon-
ics. The Fourier basis has the size of the number of measurements in the data set.
Our data sets contain up to 120,000 measurements, which means that we would
have 120,000 harmonics in our dictionary and we did not consider translations
yet. Since we can not store 120,000 x 120, 000 matrices, which are not sparse, we
have to get rid of the unnecessary harmonic components by use of extra knowledge
about physical oceanography [Stewart, 1997].

Table 5.1.: Fundamental Tidal Frequencies with their periods and sources
[Stewart, 1997].

Frequency
[1/day] Period Source

w1 9.66le-1 1lunar day Local mean lunar time
) 3.660e-2 1 month Moon’s mean longitude
ws  2.738e-3 1 year Sun’s mean longitude
wy  3.095e-4 9 years Longitude of moon’s perigee
ws -1.471e-4 19 years Longitude of moon’s ascending node
we  1.307e-7 20,940 years Longitude of sun’s perigee

Doodson [1922] has claimed, that there exist fundamental frequencies so that the
frequency of the principal tidal constituents may be written as w = Y5_; A,w,, with
fundamental frequencies w, according to Table 5.1 and Doodson numbers A, to Ta-
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5.1. Sparse Decomposition

ble 5.2. These fundamental frequencies are due to the movement of the moon and
the sun with respect to the earth. In most applications some of the fundamental
frequencies can be dropped since the tidal prediction using the remaining funda-
mental frequencies is accurate enough.

Table 5.2.: Principal Tidal Constituents with their Doodson numbers, frequency
and period [Stewart, 1997].

Doodson numbers Frequency  Period
)Ll )Lz )L3 /\4 /\5 /\6 [1/day] [days]

0 0 0 1.932e-0  5.175e-1

Principal lunar

L, ® N 2 0 0
£ & || Principalsolar 2 2 -2 0 0 0  2000e-0  5.000e-1
A _g = Lunar elliptic 2 -1 0 1 0 0 189e-0 5274e-1
Lunisolar 2 2 0 0 0 0 2005e-0  4.986e-1
— —,  Lunisolar 1 1 0 0 0 O 1.003e-0  9.973e-1
£ || Principallunar 1 -1 0 0 0 0 929e-1 1.076e-0
§ = Principalsolar 1 1 -2 0 0 0 9973e-1  1.003e-0
Elliptic lunar 1 -2 0 1 0 0 8932-1 1.120e-0
g8 ©  Fortnightly 0 2 0 0 0 0 7320e2 1.366e+1
S5 | Monthly 0 1 0 -1 0 0 36292 2755+
A~ < Semiannual 0 0 2 0 0 0 5476e-3 1.826e+2

By using this knowledge, we can reduce the number of harmonic pattern from
a full basis with all its translations to only these eleven harmonics and its transla-
tions. In most applications 30 translations for each frequency are adequate, hence,
there are 330 harmonics in the dictionary.

The wavelet basis we use is created by translations and scalings of the wavelet
Daubechies 5 and its scaling function up to level four. The support of this wavelet
is 2-5 = 10 measurements, which is sufficiently small to represent most short time
features. The coarse levels of this basis can also represent tidal effects.

The next pattern we want to discuss are the peak functions. These are in most
cases not similar to effects we want to decompose but nevertheless very useful.
The peaks represent failures by the measuring device or by transferring data. If
the dictionary does not include peak functions the RFSS will try to fix these failures
by choosing lots of other patterns which is clearly not physically senseful. More-
over, if the sampling interval is not short enough to have more than one measure-
ment during an earthquake, which lasts usually between 10 to 30 minutes, these
earthquakes appear as peak functions in the data sets. As seen in Section 1.1 the
sampling interval of our data sets are up to 60 minutes, thus, we might observe
earthquakes as peaks in these data sets.

The long time features are represented by blocks and a global linear trend in our
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5. Analysis of Sea Floor Pressure Data

dictionary. These blocks are chosen to have a length, depending on the duration
of the data set, from one week to five years. Of course a drift of tectonic plates
does not occur like a block function but these functions represent lots of trends in
a sufficient manner. The simplicity and the bounded support of these functions
help us that we do not tend to overstate the physical meaning of the computed
trend.

At the last point of this section, we want to discuss the computed dictionary op-
erator for the four used data sets. Some important facts are given in Table 5.3. For
all data sets the dictionary operator was created using Matlab®’s parallel toolbox
with two Quad-Core AMD Opteron(tm) Processor 2376, 2.3 GHz per core, and in
total 15.7 GB RAM. Most of the pattern, in fact twice the number of measurements,
are wavelets, scaling functions and peaks. Their short support is indispensable for
us to store such huge matrices. In Chapter 3 we have shown that the zero min-
imiser is obtained if the sparsity parameter « is chosen larger than a,,,, depending
on the operator and the data. These upper bound for a proper choice of « is also
shown in the table. But we do not want to compute the zero solution, thus, « is
chosen a lot smaller than these prior computed upper bounds.

Table 5.3.: Analysis of the dictionary operator, saved as sparse matrix in Matlab®.
*: offset for starting Matlab®’s parallel toolbox included

constructing memory sparsity
time [s]* size [MB] [%] Kmax
SYN 16.0 1,000 x 2,397 3.7 86.7 208.7
MAR 21.9 22,319 x 45,110 1059 9.1 396.3
CORK1 202.5 117,012 x 234,437  516.5 99.8 2,172.5
CORK2 109.1 78,983 x 159,011  457.1 99.7 1,662.7

5.1.2. Parameters

Another possibility to influence the Sparse Decomposition, next to the choice of
the dictionary operator, is the choice of the parameters « and §.

The choice of the sparsity parameter « is quite difficult. As we mentionend
above we have an upper bound «,,,, for a proper choice. In practice, we obtained
decompositions, which use not too many pattern and differ pointwise not more
than around 0.2 kPa from the data, by choosing « € [0.1,0.25] depending on the
data and the dictionary operator.

The RFSS needs the invertibility of D; Dy in every iteration. If the size of the
active set is less or equal to the number of measurements this is equivalent to the
full rank of Dy. Otherwise, if the size of the active set is too large this operator is
never invertible. Using the parameter  we invert DDy + Id instead which is
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invertible for any g > 0, because all eigenvalues of this matrix are greater than or
equal to B. To guarantee a stable inversion of the matrix, § should be chosen a lot
greater than the numerical zero which is about 1e-16. Also 8 should not be chosen
too large so that DDy + BId ~ DDy, hence, a good choice might be g = 1e-10.

5.2. Other Tools for Decomposition

In this section we present four other methods to analyse sea floor pressure data
sets. First, we discuss methods, classical in time series analysis, namely Harmonic
and Wavelet Decomposition. They are based on the Fourier and wavelet trans-
form, respectively. In addition, we also present two novel methods in time series
analysis. These are the Empirical Mode Decomposition and its enhancement En-
semble Empirical Mode Decomposition.

All methods have in common that they seek for a new representation of the
data set as a superposition of several pattern. The classical approaches achieve
this by basis transformation to the Fourier or wavelet domain. In contrast the
novel approaches calculate a dynamic basis depending on the given data set.

5.2.1. Harmonic Decomposition

The Harmonic Decomposition is mainly based on the
discrete Fourier transform and the decomposition is
done in the frequency domain. First of all, the time
series is transformed by the discrete Fourier transform.
By low-pass, band-pass and high-pass filtering, we can
decompose it to components, which frequencies corre-
spond to physical effects. The inverse transform yields
a decomposed signal, which components differ in fre-
quency.

To be more precise, let us denote a given time series
by ¥ = (Yu)n=0,..N~—1 € RN. The Harmonic basis of CV
is given by (s¥)x—o, .n_1as

Figure 5.2.: The imag-
inary part of the Har-

monic basis function s°.

sk = exp(%kn) = cos(3Fkn) + isin(3Fkn),

using Euler’s formula. To illustrate this basis the imaginary part of 53'is shown in
Figure 5.2. Note that the complex conjugate of sk, is given by exp(—2&kn). Hence,
the discrete Fourier transform of y is § € CV defined by

N-1 ‘
Ok = (y, " en = Y ynexp(—Fkn).
n=0

The components are also known as the Fourier coefficients. The basis function s* is
associated to the frequency k for 0 < k < % and to N — k if % < k < N —1. The
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5. Analysis of Sea Floor Pressure Data

first claim is rather obvious. To show the second one we only have a look at the
real part since the imaginary part is a time shift of the real part. Let us suppose
that § < k < N — 1 and define k := N — k. Then using a trigonometric addition
formula, we obtain

COS(ZWTCkn) — COS(ZWH(N — IE)?I) = COS(27T7’1 — ZWHINCH)
2

which means that the associated frequency is k = N — k.

After choosing the frequencies, which correspond to the components we want
to obtain, we can decompose the signal by filtering the Fourier coefficients and
applying the inverse discrete Fourier transform given by

1= A 27i
Yn =3 Y rexp(kn).
k=0

The above vectors can be seen as functions on the interval [0, 1]. In our appli-
cation the data sets can be seen as functions on the interval [0, T|, where T is the
duration of the time series. Hence, the kth component of the discrete Fourier trans-
form corresponds to the frequency % for0 <k < Y andto NT’k forJ <k<N-1.
By plugging in the duration of the data set MAR, we obtain for instance that the
30th Fourier coefficient corresponds to the frequency 1/day.
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Figure 5.3.: Example of Harmonic decomposition. The time series which is a su-
perposition of harmonics is shown in blue and the decomposition in black from
left to right with increasing frequencies.
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For this application we have chosen the cut-off frequencies around 0.2 /day and
4/day. This means that the Harmonic basis functions with frequencies up to
0.2/day are associated with the long time component, the basis functions with a
frequency between 0.2/day and 4/day are associated with the medium time com-
ponent and the short time component has frequencies higher than 4/day. In this
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5.2. Other Tools for Decomposition

way we know that the major tidal features are in the medium time component
since their frequencies are around 1/day and 2/day.

To illustrate the Harmonic decomposition an example decomposition is shown
in Figure 5.3. This example time series consists of three harmonics which are well
detected and separated.

For further information we refer to Grochenig [2001] and Stark [2005].

5.2.2. Wavelet Decomposition

The second method we want to discuss is the Wavelet Decomposition. This method
is very similar to the Harmonic Decomposition except that the basis used for
transformation is a wavelet basis. The transformed signal can be decomposed
by choosing which scales corresponds to which component. Again, the inverse
transformation yields to the decomposed data set. But let us again be more pre-
cise about what is going on.

To stress the main notion of the wavelet transformation let us consider a data
sety € L?(R,R). For any chosen orthogonal mother wavelet { we get the corre-
sponding orthonormal basis for L?(IR, R) given by

(i € L(RR) : (x) = 27 "/2p(2 "% k), m,k € Z}.

It is important to note that the basis functions ,, \ are shifted and scaled version
of the mother wavelet . Then the signal can be rewritten as

y= Y ¥ Pui) 2R Pmk

mkeZ

Hence, we can decompose the data set into components of different scale.

In practice we do not consider the function space
L*(R,R) but only RN and a discrete version of the trans-
formation is needed. The discrete wavelet transforma-
tion is given by a vector of detail and approximation co-
efficients. Iteratively up to a predefined coarse level, the
transform y%elds coefficients which represent the details Figure 54. Wavelet
and ’Fhe bgsm features of t'he data set. Ir} the every fur- " v hies 40 (db40,
ther iteration these coefficients are associated to coarser
features. This is exploited by the Wavelet Decomposi-
tion.

In the application we have to predefine the mother wavelet and the coarsest
level of the decomposition. One reasonable choice for the coarsestlevel is |log,(N) |,
where N is the number of measurements of the data set and |- | is the floor func-
tion, i.e. [x| := max{m € Z : m < x}. The reason for this choice is that the num-
ber of approximation coefficients at level n is roughly N /2", thus, this is the ‘'max-
imal” decomposition. The mother wavelet is chosen as one of Daubechies wavelets

scaling function)
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5. Analysis of Sea Floor Pressure Data

\V/

Figure 5.5.: Example using the Wavelet Decomposition. The time series is shown
in blue and the decomposition in black from left to right with an increasing scale.
The data is a superposition of an affine trend and two harmonics, which are
dumped by a gaussian.

since they have a similar shape like the tides. Best results were obtained by us-
ing Daubechies 40 as the mother wavelet, whose scaling function is illustrated in
Figure 5.4.
An example decomposition of a signal by using wavelets is given in Figure 5.5.
Further information about wavelets and complete information about the dis-
crete wavelet transform can be found either in a theoretical manner in Louis et al.
[1997] or in an applied manner with lots of examples in Stark [2005].

5.2.3. Empirical Mode Decomposition

The third method we would like to introduce is the Empirical Mode Decomposi-
tion (EMD) invented by Huang et al. [1998]. The classical methods use a prede-
fined and fixed basis for transformation as we have seen already. Contrary, the
EMD can be seen as computing a new basis depending on the data set. The EMD
computes for any given time signal finitely many Intrinsic Mode Functions (IMF),
which are functions satisfying the following two conditions.

1. The number of extrema and the number of zero crossings must differ at most
by one.

2. The mean value of the upper and lower envelope is zero at any time, where
the upper envelope is computed by interpolating the maxima and the lower
envelope by interpolating the minima.

The task of the EMD is to find these IMFs and is done by the sifting process.
1. Find all extrema of the given data.

2. If the number of extrema is one or less, we have found all IMFs and terminate
the algorithm.
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5.2. Other Tools for Decomposition

3. Compute the upper and lower envelope by interpolation the maxima and
minima and the mean of these.

4. If the mean value is zero, we have found an IMF. Start the sifting process
again with the data subtracted by this IMF. Otherwise, start the sifting pro-
cess again with the data subtracted by the mean.

This is also shown in Figure 5.6.

E initialize ]

compute
mean value

E terminate ]

Figure 5.6.: The algorithm of the EMD. The coloured areas represent the loops of
the algorithm.

As we have seen we have done no a priori choices. In fact one can choose an in-
terpolating scheme but this is predefined by cubic splines which works very well
as tested with some example time series. Since subtracting an IMF reduces the
number of extrema, this algorithm terminates for every finite signal. A disadvan-
tage of this method is that it is empirical and has no solid theoretical foundation.
Compared to the Harmonic and Wavelet Decomposition, which are mainly based
on the fast Fourier transform and the discrete wavelet transform, the computing
effort to decompose the data by EMD is higher but still tolerable. A detailed in-
troduction to the EMD is given in Huang et al. [1998].

In Figure 5.7 we see the EMD applied to a time series, which is a super position
of harmonics and a linear trend.

5.2.4. Ensemble Empirical Mode Decomposition

A challenge in decomposing time series is to prevent mode mixing. Phenomena of
similar time scale should be in the same mode (here: IMF) and vice versa phenom-
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5. Analysis of Sea Floor Pressure Data

N N A

Figure 5.7.: Example of the EMD. The time series is shown in blue and the decom-
position in black. On the left and the middle the separated component is harmonic
like. The right image shows the separated trend. The data set is a superposition
of two harmonics and a linear trend
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(a) Decomposition by EMD (b) Decomposition by EEMD

harmonic
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Figure 5.8.: Example of the EEMD. The usual EMD fails to decompose the time
series because of mode mixing. Contrary, the noise assisted EEMD performs very
well and separates the high frequency component from the low frequent har-
monic. The EEMD has taken 50 trials with a white noise of standard deviation
ratio of 0.1.

ena of a different scale are expected to be in a different mode. For this purpose
Wu and Huang suggested in 2009 a noise assisted data analysis method, called
EEMD [Wu and Huang, 2009]. For any given signal, white noise is added and
then decomposed using the EMD. At the end - after numerous trials - we take the
mean of the IMFs. "By adding finite noise, the EEMD elimated largely the mode
mixing problem and preserve physical uniqueness of decomposition. Therefore,
the EEMD represents a major improvement of the EMD method.” [Wu and Huang,
2009]. Of course this is more time consuming than the usual EMD and we have to
check if this is worthwhile in our application or not.

As parameters we have to specify the ratio of the standard deviation of the
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signal and the standard deviation of the added white noise and the number of
trials. The standard deviation ratio in our application varies between 0.1 and 0.2
and the number of iterations varies between 50 and 100.

To see the ability of the EEMD to prevent mode mixing when EMD fails we have
a look at Figure 5.8. The data set is a harmonic with a low frequency and on top of
the maxima there are high frequent harmonics. This example was also proposed
by Wu and Huang [2009].

5.3. Results

In this section we present and discuss the results. To emphasise the variation of
the pressure we have preprocessed the data by subtracting the mean value. The
mean value of the data sets is about 25,000 kPa and the features we are looking for
might have an amplitude of only a few kPa, hence, subtracting the mean is crucial
for plotting these data sets.

For the Harmonic and Wavelet Decomposition we have used Matlab®’s func-
tions £ft and wavedec, respectively. These are implemented very fast and fulfil all
the requirements for the Harmonic and Wavelet Decomposition. The algorithms
for EMD and EEMD are implemented by Rilling [2007] and Wu [downloaded 04/2011].
These are implemented as a m-file and thus, do not compete with £ft and wavedec
in time. This is also true for the RFSS, which was implemented by Schiffler [2009].
All three algorithms can be found on the world wide web, see our references.

All algorithms extract the tides very well, hence, this is not mentioned in further
discussions.

5.3.1. Decomposition of SYN

First, we have a look at the decomposition of the data SYN, which is shown in
Figure 5.9. Additionally, the short and long time components for this data set are
presented in Figure 5.10. This data set is a synthetic one and therefore the cal-
culated decompositions can be compared to the real one. The minimal goal for
all methods is to decompose the data set into three main components, which are
‘short’, ‘medium’ and "long” and represent features with periods or wavelength
shorter than the tides, the tides themselves and the one with longer lasting fea-
tures. As we see the methods’ ability for extracting all five components varies
substantially. The Sparse Decomposition is able to decompose the short time fea-
tures very well but fail by separating the step from the ramp. All other decom-
position methods are also not able to separate these two components from each
other. The Harmonic and Wavelet Decomposition were capable to separate the
short time features from the tides but can not separate them from the noise. The
coarsest decomposition is given by EMD and EEMD. These methods are only able
to decompose the medium and long time component.

Harmonic, Wavelet and Sparse Decomposition correctly detect the short time
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Figure 5.9.: Decomposition of data set SYN. There are shown from the top to the
bottom the short, medium and long time components. The real decomposition
can be seen in Figure 5.9(f). EMD and EEMD were not capable to detect features

with a higher frequency than the tides.
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Figure 5.10.: Left: Short time components of the data set SYN decomposed by
the methods Harmonic, Wavelet and Sparse. EMD and EEMD were not capable
to decompose features with a higher frequency than the tides. Right: Long time
components of the data set SYN decomposed by all five methods. The long time
component obtained by the methods is drawn black and the real trend is drawn
blue.

features in time but the classical methods tend to underestimate the amplitude.
The results of Harmonic and Wavelet Decomposition show very large boundary
effects due to filtering, periodisation and the lack of pattern, which fit to all com-
ponents. Methodically, Sparse Decomposition has no boundary effects when the
dictionary is chosen well enough. On the one hand, Sparse Decomposition is not
based on filtering nor does it assume a periodic signal. On the other hand, if the
dictionary contains local and global pattern, features on one scale do not have to
be fitted by pattern of a different scale. Overall, we see that Sparse Decomposition
performs best in decomposing the short time features.

The long time features are decomposed very well by all algorithms. Except
of Sparse Decomposition the methods are not capable to reproduce the edge of
the step. EMD and Sparse Decomposition perform really good in detecting the
ramp. Again the results of Harmonic and Wavelet Decomposition are degraded
by boundary effects. In summary, all methods reproduce the real long time com-
ponent quite well, especially the trend of the Sparse Decomposition is very similar
to the real one.

Since this is a synthetic data set we do not only compare the results visually but
check their quality also in terms of the relative errors, i.e. the quotion of the norm
of the error and the norm of the component we are looking for. These results are
shown in Table 5.4.

The short time features are decomposed best in terms of relative errors by Wave-
let Decomposition in the noisy case. The boundary effects at the short time com-
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Table 5.4.: Relative errors of the methods for SYN. The relative error for a real

component ¢ and the calculated component ¢ is % *: no short time component

obtained. **: the noise was not seperated from the short time component.
Harmonic Wavelet EMD EEMD Sparse

v o, short + noise ~ 2.6665 0.7007 -* -* 0.9132
£5  short - < 0.3305
R tides 0.0426 0.0381 0.0151 0.0279 0.0133

ramp + step 0.8522 09250 03026 0.4650 0.2650

ponent of Harmonic Decomposition are very large, thus the relative error is worst
of those methods, which were capable to find short time features. Only Sparse
Decomposition is able to separate a noise-free short time component which is also
very well in terms of relative errors.

The tides are decomposed satisfactorily by all methods as mentioned above.
Best performance is shown by EMD and Sparse Decomposition but all the others
are really good as well.

The long term component is best predicted by Sparse Decomposition followed
by EMD and EEMD. The results of Harmonic and Wavelet Decomposition are
worst due to boundary effects.

5.3.2. Decomposition of MAR

Next, we discuss the results of the second data set MAR, which are given in Figure
5.11. Again, the short and long time components are also shown grouped in Figure
5.12. First of all, we see that this time all algorithms provide a decomposition with
short, medium and long time features. Moreover, Sparse Decomposition is again
capable to detract the noise from the short time component.

The visible peaks at Harmonic Decomposition and EMD are also extracted by
Sparse Decomposition. All these three short time components look quite simi-
lar and differ a lot from the short time components obtained by Wavelet Decom-
position and EEMD. The short time component of the Wavelet Decomposition
shows only one significant peak, has a quite high undefined 'noise level’ and huge
boundary effects. The worst short time component is given by EEMD. The added
white noise does not fade away, hence, no significant short time feature can be
obtained. Since this data set is not synthetic, we do not know which results are
best. The short time components of Harmonic and Sparse Decomposition as well
as EMD look quite similar and these tools are methodically completely different,
thus, we guess that the real short time component might be similar to the one
provided by this three methods.

The long time component of all five methods are basically the same even if Har-
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Figure 5.11.: Decomposition of the data set MAR. There are shown from the top
to the bottom the short, medium and long time components. Additionally, Sparse
Decomposition separates the short time features from the noise.
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monic and Wavelet Decomposition as well as EEMD show a lot more waves. All
tive trends provide a rapid downdrift of about 0.4 kPa during the first week and a
slow updrift of the same amount in the following three weeks. The other features
obtained in these trends, like the waves in the one obtained by Harmonic and
Wavelet Decomposition, are not given significantly in the other methods’ trends.
Hence, they are probably a byproduct of these methods. As we have seen al-
ready in other components, the long time component of the Wavelet Decomposi-
tion shows significant boundary effects.
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Figure 5.12.: The short (left) and long (right) time components of the data set MAR.

5.3.3. Decomposition of CORK1

The results of the first data set at Vancouver Island are presented in Figures 5.13
and 5.14. Again all algorithms provide at least a decomposition in short, medium
and long time components and furthermore, Sparse Decomposition is able to sep-
arate the noise from the short time component. The short time component of the
data set CORK1 contains two events with an amplitude of approximately 20 kPa.
Thus, we have to have a look at two scales. In addition to the full view of the short
time component, we show this component also zoomed in for a more detailed
presentation.

The short time components of Harmonic and Wavelet Decomposition look very
similar in any case. The detected peaks are the same and they also do not differ
at the basis noise level. All five methods detect the two major short time features
at the same location in time but differ in the amplitude of the first event. EMD
and EEMD detect these features nearly symmetrically to the time axis. This might
be of methodical reason since the resulting IMFs are often similar to harmonic
waves. As at the data set MAR, the short time component of EEMD is not very
useful since the amplitude of the remaining added noise is of the same scale as the
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Figure 5.14.: On the left hand side are the short time components of CORK1 de-
composed by the five methods. On the top showed in the usual way and on

the bottom zoomed in. On the right hand side are the long time components of
CORKI.

events we are looking for.

On the contrary to the dissimilarity of the short time components, the long time
components of the five methods look very similar. They all detect an almost con-
stant or a slightly decreasing pressure variation from June 2003 to spring 2004 fol-
lowed by an updrift of around 0.7 kPa in spring 2004. Afterwards, there is again
a period of steady pressure variation, which lasts around one year. At the end
of the measuring interval, Harmonic and Sparse Decomposition as well as EEMD
detect a decrease of around 0.4 kPa. On the opposite, EMDs long time component
does not show a decrease and the Wavelet Decomposition is highly influenced by
boundary effects.
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Figure 5.15.: Decomposition of the data set CORK2. There are shown from the top
to the bottom the short, medium and long time components. Since the short time
components has features of different amplitudes these are also showed zoomed
in. EMD and EEMD failed to detect the short period features.
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5.3.4. Decomposition of CORK2
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Figure 5.16.: The short time components of CORK2 are on the left hand side. On
the top in the usual way and on the bottom zoomed in. On the right hand side are
the long time components of CORK2.

At last, we present the result of the second data set at Vancouver Island. This is
with a duration of more than 9 years the longest data set. The results are shown
in Figures 5.15 and 5.16. Since the sampling interval is only 60 min, we can not
expect short time features with a shorter duration than 60 min to appear. Hence,
the short time components have to be interpreted very carefully. As we have seen
already at the data set SYN, EMD and EEMD are again not capable to provide a
short time components for this data set. The other three methods separate a short
time component and in addition, Sparse Decomposition separates the noise.

The long time components look again very similar. All five methods detect a
decrease of about 3.5 kPa in the first two years and an increase of the same amount
in the following seven years. Additionally, all long time components show waves
of period around one year especially at the ramp part of the trend, which might
be due to the long time tidal constituents. As already seen very often at the other
data sets the long time component of CORK2 created by Wavelet Decomposition
is affected by significant boundary effects.

5.3.5. Discussion

We start our discussion by having a look at the computing time of the methods
which are shown in Table 5.5.
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5.3. Results

Table 5.5.: Summary of the speed of the methods measured in CPU time; *: effi-
ciently implemented by Matlab®; **: without creating the operator

Harmonic* Wavelet* EMD EEMD Sparse™*
o SYN 0.001 s 1.09 s 021s 36.58 s 1.40s
.§ MAR 0.027 s 1.89s 30.30 s 15.03 min  10.26 min
E CORK1 0.107 s 2.70 s 12.00 min 9.86 h 19.20 h
Y CORK2 0.103 s 2.48 s 19.77 s 54.81 min 8.33 days

The results of Harmonic and Wavelet Decomposition as well as EMD and EEMD
were obtained using an AMD Athlon(tm) 64 X2 Dual Core Processor 3800+ with
2 GHz per core and in total 1.95 GB RAM. Since the computing effort for Sparse
Decomposition is considerably longer we had to use an external computer with
two Quad-Core AMD Opteron(tm) Processor 2376, 2.3 GHz per core, and in total
15.7 GB RAM. The current version of RFSS can not be scheduled in parallel, thus,
we could only use one core.

Clearly, the computing time of Harmonic and Wavelet Decomposition are the
best, i.e. they need the smallest amount of time, but to be fair they are based on
the Matlab® routines £ft and wavedec, which are highly efficient algorithms and
implemented very fast. They are almost unaffected by the number of measure-
ments of the data set and do not need more than 3 seconds for any of our data
sets. The other algorithms are a lot more complex, thus, computing time is a lim-
iting factor if using these methods. EMD, which needs some seconds to several
minutes depending on the length of the data set, is also quite applicable to long
data sets. The algorithms EEMD and RFSS, which is the major step of Sparse De-
composition, are a lot slower if applied to large data sets. The running time of
EEMD goes up to several hours and the one of RFSS up to several days.

We complete the discussion of the results by summarising the previous section
in Table 5.6 based on the following criteria. First, how successful was the algo-
rithm in decomposing the signal into a long and short period components, espe-
cially, did the algorithm find a short period event in the presence of background
noise? Second, does the algorithm create large effects at the boundaries of the time
window? Lately, how much CPU time is needed for the decomposition? In most
cases we do not know what the real decomposition is and which features are re-
ally due to boundary effects. Furthermore, the algorithms are written in different
programming languages and are run on different computers. Thus, we decided to
judge only in three categories, namely good, fair and bad. Of course due to this
coarse judgement there might be the case that two methods with the same mark
and one performed clearly better. But we prefer to make this fault and avoid to
overstate the results. The category ‘computing efficiency” was evaluated due to
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the running times of the algorithms shown in Table 5.5.

Table 5.6.: Overview of the results. ¥ indicates good, © fair, and X bad results.
Harmonic Wavelet EMD EEMD Sparse

T SN v v X X v
_ & MAR v X v
2 g  CORKI v v v
$ %  CORK2 v v X X v
§ o SYN 4 4
A 5 MAR 4 4 v v

% CORKI v v vV

= CORK2 4 4 4
. SYN X x % v
S 2 MAR X v v v
5 £ CoRrkl X v v v
& CORK2 X v v v
Computing efficiency 4 4 X X

First of all, everyone can notice by looking at Table 5.6 that no method is perfect
in every aspect.

Harmonic and Wavelet Decomposition perform very well in short period fea-
tures and quite well in trend detection but their results show massive boundary
effects. Also mentionably is that Harmonic and Wavelet Decomposition are really
fast even if the number of measurements goes up to several hundred thousands.

EMD and EEMD have problems by decomposing the short period features when
the sampling interval is 60 min. The added white noise by EEMD, which should
improve the EMD, does not fade away in one houndred runs and is clearly a disad-
vantage when trying to detect components with a small amplitude. In contrast to
that, both EMD and EEMD perform very well in detecting long time components.
Another drawback is the additional computational effort of the EEMD which is,
by comparing the results of EMD and EEMD, not worthwile.

Sparse Decomposition behaved very well in detecting short and long period
features and furthermore, the noise was separated at any data set. Another ad-
vantage of Sparse Decomposition is that we did not obtain any boundary effects
at the computed decompositions. The only disadvantage is the computing effi-
ciency, which clearly needs to be improved for practical purposes.
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Conclusions

In this thesis we applied the notion of sparsity to decompose sea floor pressure
data sets into components of similar scale in time. This is achieved by ¢! minimi-
sation with an overcomplete dictionary. Since the corresponding dictionary oper-
ator is overcomplete and some submatrices in our algorithm are not invertible we
needed a stabilised ¢! penalised Tikhonov functional. It turned out that the elastic
net, which combines a ¢! and a £ penalty term, fulfils the needed requirements.
An efficient way to solve the elastic net is given by the RFSS. This algorithm iter-
atively solves the optimal conditions of the elastic net. These are given by using
the subdifferential calculus.

Further investigations have shown that the elastic net has a unique minimiser
as long as the stability parameter is non-zero. In addition, we have shown that the
minimiser depends continuously on the parameters. This main result is exploited
to derive further smoothness results for similar parameter-dependent mappings.

The application of Sparse Decomposition to the four sea floor pressure data
sets have shown that this is a appropriate way to decompose this data sets into
physical meaningful components. We also tested four other decomposition meth-
ods, namely the classical Harmonic and Wavelet Decomposition as well as the
novel Empirical Mode Decomposition and its enhancement the Ensemble Empir-
ical Mode Decomposition. These methods also showed some useful properties.
The classical methods are very fast and their decompositions are acceptable. In
particular, the Harmonic decomposition has shown good quality, since it is not as
susceptible to boundary effects as the Wavelet Decomposition. The novel method
EMD is also acceptable. Its computing effort is moderate and especially its long
time components were reasonable even if it does not detect sharp features as steps
appropriately. Only the ability to decompose the short time component was not
decent. The enhancement of the EMD, EEMD, performed never better than the
EMD. It never showed that the additional computing effort is worthwhile. Also
the added white noise, which does not fade away, degrades the results relevantly.

Overall, Sparse Decomposition performs best in decomposing sea floor pressure
data sets at least for short data sets, i.e. less than about 100,000 measurements. For
larger data sets we have to use the other techniques or to enhance this method for
longer data sets. This can be done either by speeding up the RFSS or by finding
better dictionaries, since the sparsity of the data set in the dictionary is crucial for
the speed.
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6. Conclusions

For further studies on this field the following issues are of interest. On the one
hand, there are some issues concerning the parameters of the elastic net. If the
data is in the image of the dictionary operator, which is the case for overcomplete
dictionaries, how do we have to choose the sparsity parameter to get a decompo-
sition so that the residual is less than any predefined tolerance threshold? What is
a proper choice of the stability parameter?

On the other hand, there are also questions left concerning the speed of the
RFSS. How fast is the RFSS in average? Is it possible to proof a rate of conver-
gence if we make assumptions on the dictionary operator or the data? How can
we speed up the RFSS? Is there any modification of the RFSS so that we can use
parallel computing for speed up?
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List of Notations

A, A A
B(A)
Im(f)
Reo
L(X,Y)
X', X"
{«',-)
1%
Ouf,0nf
Gr(x)
Fr(x)
of

—

elastic net
D, B

P
1R+
L
P

D = ™ R

complement, interior and closure of a set A

powerset of a set A

imageof f: X = Y, Im(f) :=={y€Y: Ix e Xs.t f(x) =y}

the extended real numbers, Ro := R U {oo}

linear and continuous mappings from X to Y

the dual space and second dual space of X

duality pairing, (x/, ) :=x'(-),x’ € X’

adjoint operator to K € L(X,Y), K" : Y/ — X’

partial derivatives, d, f (x) := %(x), onf(x):= %(x)
Gateaux derivative of f at x

Fréchet derivative of f at x

subdifferential of f : X — Reo, 9f : X = X'

set valued mapping

elastic net, @, 5 (x) := 3 ||Dx — y[3, + a[| x| o + 3Blx[1%
space of sequences, which satisfy Y, [x,|F < 00, p < o0
Rt:={teR:t>0}

Ry :=R* U {0}

set of all pairs of parameters, P := Rj x R"

sparsity parameter

stability parameter

data

dictionary operator
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List of Notations

RESS
M,N

72

finite dimensions, D : RM — RN

set of all possible indices, N := {1,..., N}

active set, the set of all indices n so that x,, # 0, C NV
restriction of x = (X, ), to the active set, xp := (X )per
modulus of the nth component, |x|, := |x,]

a pattern; a column of the dictionary operator D

restriction of the dictionary operator D = (d,),en to the active
set, Dp := (dn)ner

auxiliary functional, Eor(x) := 3||Drxp — 2|5 + a(bp, xp) +
3Bl 3

abbreviation of the auxiliary functional, & := Eg 1

added index in ‘next pattern’

removed index in "line search’

kth triple, (T, x,0)F := (T, xk, %)

gradient with respect to the active set, Vrf := (0, f)ner

residual, R := Dx —y
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