Optimising MRI Sampling with Bi-Level Learning

Matthias J. Ehrhardt

Institute for Mathematical Innovation, University of Bath, UK

May 29, 2020

Joint work with: Sherry, Graves, Maierhofer, Williams, Schönlieb (all Cambridge, UK), Benning (Queen Mary, UK), De los Reyes (EPN, Ecuador)

The Leverhulme Trust

Engineering and Physical Sciences Research Council

Outline

1) What are inverse problems?

2) How to solve inverse problems?

$$\min_x \frac{1}{2} \|Ax - y\|_2^2 + \lambda \mathcal{R}(x)$$

3) Bi-level Learning

4) Learn sampling pattern in MRI

What are inverse problems?

What are inverse problems? Inverse to what?

Right to left: forward problem (easy)

Left to right: inverse problem (hard)

 $A\mathbf{x} = \mathbf{y}$

X : 3D image of hands

 $m{y}$: 2D shadow of hands $m{A}$: mathematical model

Goal: recover X given Y

Example: Image Deblurring

traffic control

astronomy

cell biology

Model: Convolution
$$A_{\mathbf{X}}(t) = \mathbf{X} * k(s) = \int_{\mathbb{R}^2} \mathbf{X}(t)k(s-t)dt$$

Example: Magnetic Resonance Imaging (MRI)

Model: Fourier transform $A_{\mathbf{X}}(s) = \int_{\mathbb{R}^2} \mathbf{X}(s) \exp(-ist) dt$

What is the problem with inverse problems? MRI: Ax = y $Ax(s) = \int_{\mathbb{R}^2} x(s) \exp(-ist) dt$

What is the problem with inverse problems? MRI: Ax = y $Ax(s) = \int_{\mathbb{R}^2} x(s) \exp(-ist) dt$

Hadamard (1902): We call an inverse problem Ax = y well-posed if

- (1) a solution x^* exists
- (2) the solution x^* is **unique**

(3) x^* depends **continuously** on data y.

Otherwise, it is called **ill-posed**.

Jacques Hadamard

Hadamard (1902): We call an inverse problem Ax = y well-posed if

- (1) a solution \mathbf{x}^* exists
- (2) the solution x^* is **unique**

(3) x^* depends **continuously** on data y.

Otherwise, it is called **ill-posed**.

Jacques Hadamard

Most interesting problems are **ill-posed**.

How to solve inverse problems?

How to solve inverse problems?

Variational regularization (\sim 2000) Approximate a solution x^* of Ax = y via

$$\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \left\{ \frac{1}{2} \|A\mathbf{x} - \mathbf{y}\|_{2}^{2} + \lambda \mathcal{R}(\mathbf{x}) \right\}$$

 $\mathcal R$ regularizer: penalizes unwanted features and ensures stability

 λ regularization parameter: $\lambda \ge 0$. If $\lambda = 0$, then an original solution is recovered. If $\lambda \to \infty$, more and more weight is given to the regularizer \mathcal{R} .

textbooks: Scherzer et al. 2008, Ito and Jin 2015, Benning and Burger 2018

Tikhonov regularization (~1960): $\mathcal{R}(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|_2^2$ $\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \left\{ \frac{1}{2} \|A\mathbf{x} - \mathbf{y}\|_2^2 + \frac{\lambda}{2} \|\mathbf{x}\|_2^2 \right\}$

Andrey Tikhonov

Tikhonov regularization (~1960): $\mathcal{R}(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|_2^2$ $\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \left\{ \frac{1}{2} \|A\mathbf{x} - \mathbf{y}\|_2^2 + \frac{\lambda}{2} \|\mathbf{x}\|_2^2 \right\}$

Andrey Tikhonov

Tikhonov regularization (~1960): $\mathcal{R}(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|_2^2$ $\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \left\{ \frac{1}{2} \|A\mathbf{x} - \mathbf{y}\|_2^2 + \frac{\lambda}{2} \|\mathbf{x}\|_2^2 \right\}$

Andrey Tikhonov

Total Variation regularization: $\mathcal{R}(x) = \|\nabla x\|_1 \text{ Rudin, Osher, Fatemi 1992}$ $\hat{x} \in \arg \min_{x} \left\{ \frac{1}{2} \|Ax - y\|_2^2 + \lambda \|\nabla x\|_1 \right\}$

Stanley Osher

Tikhonov regularization (~1960): $\mathcal{R}(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|_2^2$ $\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \left\{ \frac{1}{2} \|A\mathbf{x} - \mathbf{y}\|_2^2 + \frac{\lambda}{2} \|\mathbf{x}\|_2^2 \right\}$

Andrey Tikhonov

Total Variation regularization: $\mathcal{R}(\mathbf{x}) = \|\nabla \mathbf{x}\|_{1} \text{ Rudin, Osher, Fatemi 1992}$ $\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \left\{ \frac{1}{2} \|A\mathbf{x} - \mathbf{y}\|_{2}^{2} + \lambda \|\nabla \mathbf{x}\|_{1} \right\}$

Stanley Osher

Tikhonov (~1960)

$$\mathcal{R}(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|_2^2$$

Total Variation Rudin, Osher, Fatemi 1992

 $\mathcal{R}(\mathbf{x}) = \|\nabla \mathbf{x}\|_1$

Tikhonov (\sim 1960)

$$\mathcal{R}(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|_2^2$$

Total Variation Rudin, Osher, Fatemi 1992

 $\mathcal{R}(\mathbf{x}) = \|\nabla \mathbf{x}\|_1$

 \mathcal{H}^1 (~1960-1990?) $\mathcal{R}(x) = \frac{1}{2} \|\nabla x\|_2^2$

Wavelet sparsity (~1990) $\mathcal{R}(x) = \|Wx\|_1$

Total Generalized Variation: Bredies, Kunisch, Pock 2010 $\mathcal{R}(x) = \inf_{v} \|\nabla x - v\|_{1} + \beta \|\nabla v\|_{1}$

Connection to PDEs

Total Variation regularization: $\mathcal{R}(x) = \|\nabla x\|_1 \text{ Rudin, Osher, Fatemi 1992}$ $\hat{x} \in \arg \min_{x} \left\{ \frac{1}{2} \|Ax - y\|_2^2 + \lambda \|\nabla x\|_1 \right\}$

"Smooth" Total Variation regularization:

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \left\{ \frac{1}{2} \|A\mathbf{x} - \mathbf{y}\|_{2}^{2} + \lambda \int \rho(\nabla \mathbf{x}(s)) ds + \frac{\varepsilon}{2} \|\mathbf{x}\|_{2}^{2} \right\}$$

•
$$\rho(t) = ||t||_2^2$$

• $\rho(t) = \sqrt{||t||_2^2 + \gamma^2}$ or Huber loss

strongly convex and smooth optimization problem

Connection to PDEs

Total Variation regularization: $\mathcal{R}(x) = \|\nabla x\|_1 \text{ Rudin, Osher, Fatemi 1992}$ $\hat{x} \in \arg \min_{x} \left\{ \frac{1}{2} \|Ax - y\|_2^2 + \lambda \|\nabla x\|_1 \right\}$

"Smooth" Total Variation regularization:

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \left\{ \frac{1}{2} \|A\mathbf{x} - \mathbf{y}\|_{2}^{2} + \lambda \int \rho(\nabla \mathbf{x}(s)) ds + \frac{\varepsilon}{2} \|\mathbf{x}\|_{2}^{2} \right\}$$
$$\Leftrightarrow \quad (A^{*}A + \varepsilon I) \hat{\mathbf{x}} - \lambda \operatorname{div} \rho'(\nabla \hat{\mathbf{x}}) = A^{*} \mathbf{y}$$

ρ(t) = ||t||₂² ⇒ linear PDE
 ρ(t) = √ ||t||₂² + γ² or Huber loss ⇒ nonlinear PDE
 strongly convex and smooth optimization problem

Compressed Sensing MRI:

$$\begin{split} A &= S_{\Omega} \circ F \text{ Lustig, Donoho, Pauly 2007} \\ \text{Fourier transform } F \text{, sampling } S_{\Omega} w = w|_{\Omega} \\ \hat{x} \in \arg \min_{x} \left\{ \frac{1}{2} \|S_{\Omega} F x - y\|_{2}^{2} + \lambda \|\nabla x\|_{1} \right\} \end{split}$$

Miki Lustig

Compressed Sensing MRI:

$$\begin{split} A &= S_{\Omega} \circ F \text{ Lustig, Donoho, Pauly 2007} \\ \text{Fourier transform } F \text{, sampling } S_{\Omega}w = w|_{\Omega} \\ \hat{x} \in \arg\min_{x} \left\{ \frac{1}{2} \|S_{\Omega}Fx - y\|_{2}^{2} + \lambda \|\nabla x\|_{1} \right\} \end{split}$$

Compressed Sensing MRI:

 $\begin{aligned} A &= S_{\Omega} \circ F \text{ Lustig, Donoho, Pauly 2007} \\ \text{Fourier transform } F, \text{ sampling } S_{\Omega}w &= w|_{\Omega} \\ \hat{x} \in \arg\min_{x} \left\{ \frac{1}{2} \|S_{\Omega}Fx - y\|_{2}^{2} + \lambda \|\nabla x\|_{1} \right\} \end{aligned}$

Compressed Sensing MRI:

$$\begin{split} A &= S_{\Omega} \circ F \text{ Lustig, Donoho, Pauly 2007} \\ \text{Fourier transform } F \text{, sampling } S_{\Omega} w = w|_{\Omega} \\ \hat{x} \in \arg \min_{x} \left\{ \frac{1}{2} \|S_{\Omega} F x - y\|_{2}^{2} + \lambda \|\nabla x\|_{1} \right\} \end{split}$$

Compressed Sensing MRI:

$$\begin{split} A &= S_{\Omega} \circ F \text{ Lustig, Donoho, Pauly 2007} \\ \text{Fourier transform } F \text{, sampling } S_{\Omega}w = w|_{\Omega} \\ \hat{x} \in \arg\min_{x} \left\{ \frac{1}{2} \|S_{\Omega}Fx - y\|_{2}^{2} + \lambda \|\nabla x\|_{1} \right\} \end{split}$$

Compressed Sensing MRI:

$$\begin{split} A &= S_{\Omega} \circ F \text{ Lustig, Donoho, Pauly 2007} \\ \text{Fourier transform } F \text{, sampling } S_{\Omega}w = w|_{\Omega} \\ \hat{x} \in \arg\min_{x} \left\{ \frac{1}{2} \|S_{\Omega}Fx - y\|_{2}^{2} + \lambda \|\nabla x\|_{1} \right\} \end{split}$$

Miki Lustig

sampling $S^*_{\Omega} y$

How to choose the sampling Ω ? Is there an optimal sampling?

Compressed Sensing MRI:

 $\begin{aligned} A &= S_{\Omega} \circ F \text{ Lustig, Donoho, Pauly 2007} \\ \text{Fourier transform } F, \text{ sampling } S_{\Omega}w &= w|_{\Omega} \\ \hat{x} \in \arg\min_{x} \left\{ \frac{1}{2} \|S_{\Omega}Fx - y\|_{2}^{2} + \lambda \|\nabla x\|_{1} \right\} \end{aligned}$

Miki Lustig

 $\begin{array}{ll} \text{sampling } S^*_\Omega y & \lambda = 0 & \lambda = 10^{-3} \\ \text{How to choose the sampling } \Omega? \text{ Is there an optimal sampling?} \\ \text{Does the optimal sampling depend on the regularizer } \mathcal{R}? \end{array}$

Bi-level Learning

$$\hat{\mathbf{x}} = \arg\min_{x} \left\{ \frac{1}{2} \|Ax - y\|_{2}^{2} + \lambda \mathcal{R}(x) \right\}$$

 ${\mathcal R}$ smooth and strongly convex

Upper level (learning): Given $(x^{\dagger}, y), y = Ax^{\dagger} + \varepsilon$, solve

 $\min_{\substack{\lambda \ge 0, \hat{x}}} \|\hat{x} - x^{\dagger}\|_2^2$

Lower level (solve inverse problem): $\hat{x} = \arg \min_{x} \left\{ \frac{1}{2} \|Ax - y\|_{2}^{2} + \lambda \mathcal{R}(x) \right\}$

Carola Schönlieb \mathcal{R} smooth and strongly convex

von Stackelberg 1934, Kunisch and Pock 2013, De los Reyes and Schönlieb 2013

Upper level (learning): Given $(x^{\dagger}, y), y = Ax^{\dagger} + \varepsilon$, solve

 $\min_{\substack{\lambda \ge 0, \hat{x}}} \|\hat{x} - x^{\dagger}\|_2^2$

Lower level (solve inverse problem): $\hat{x} = \arg \min_{x} \left\{ \frac{1}{2} \|Ax - y\|_{2}^{2} + \lambda \mathcal{R}(x) \right\}$

Carola Schönlieb \mathcal{R} smooth and strongly convex

von Stackelberg 1934, Kunisch and Pock 2013, De los Reyes and Schönlieb 2013

Upper level (learning): Given $(x_i^{\dagger}, y_i)_{i=1}^n, y_i = Ax_i^{\dagger} + \varepsilon_i$, solve $\min_{\lambda \ge 0, \hat{x}_i} \frac{1}{n} \sum_{i=1}^n \|\hat{x}_i - x_i^{\dagger}\|_2^2$

Lower level (solve inverse problem):

$$\hat{x}_i = \arg \min_{x} \left\{ \frac{1}{2} \|Ax - y_i\|_2^2 + \lambda \mathcal{R}(x) \right\}$$

Carola Schönlieb \mathcal{R} smooth and strongly convex

von Stackelberg 1934, Kunisch and Pock 2013, De los Reyes and Schönlieb 2013

Upper level:
$$\min_{\lambda \ge 0, \hat{x}} \|\hat{x} - x^{\dagger}\|_2^2$$

Lower level:

$$\hat{x} = \arg\min_{x} \left\{ \frac{1}{2} \|Ax - y\|_{2}^{2} + \lambda \mathcal{R}(x) \right\}$$

Upper level:

$$\begin{array}{l} \underset{\lambda \geq 0, \hat{x}}{\min} U(\hat{x}) \\
\text{Lower level:} \\
\hat{x} = \arg \min_{x} \left\{ \frac{1}{2} \|Ax - y\|_{2}^{2} + \lambda \mathcal{R}(x) \right\}
\end{array}$$

Upper level:	$\min_{\substack{\lambda \geq 0, \hat{x}}} U(\hat{x})$
Lower level:	$\hat{x} = \arg\min_{x} L(x, \lambda)$

Upper	level:	$\min_{\substack{\lambda \ge 0, \hat{x}}} U(\hat{x})$	
Lower	level : $x_{\lambda} := \hat{x} = \arg\min_{x}$	$L(x, \lambda)$	

Reduced formulation: $\min_{\lambda \ge 0} U(x_{\lambda}) =: \tilde{U}(\lambda)$

Upper	level:	$\min_{\substack{\lambda \ge 0, \hat{x}}} U(\hat{x})$	
Lower	$\begin{aligned} \mathbf{level}:\\ x_{\lambda} &:= \hat{x} = \arg m \end{aligned}$	$\inf_{\mathcal{L}} L(x, \boldsymbol{\lambda}) \Leftrightarrow $	$\partial_{x}L(x_{\lambda}, \lambda) = 0$
Reduced formulation : $\min_{\lambda \ge 0} U(x_{\lambda}) =: \tilde{U}(\lambda)$			

$$0 = \partial_x^2 L(x_{\lambda}, \lambda) \partial_{\lambda} x_{\lambda} + \partial_{\theta} \partial_x L(x_{\lambda}, \lambda) \quad \Leftrightarrow \quad \partial_{\lambda} x_{\lambda} = -B^{-1}A$$

Upper level:	$\min_{\lambda \geq 0, \hat{x}} U(\hat{x})$	
Lower level: $x_{\lambda} :=$	$\hat{x} = \arg\min_{x} L(x, \lambda) \Leftrightarrow \partial_{x} L(x_{\lambda}, \lambda) = 0$	
Reduced form	nulation: $\min_{\lambda>0} U(x_{\lambda}) =: \tilde{U}(\lambda)$	

$$0 = \partial_x^2 L(x_{\lambda}, \lambda) \partial_{\lambda} x_{\lambda} + \partial_{\theta} \partial_x L(x_{\lambda}, \lambda) \quad \Leftrightarrow \quad \partial_{\lambda} x_{\lambda} = -B^{-1}A$$

$$\nabla \tilde{U}(\lambda) = (\partial_{\lambda} x_{\lambda})^* \nabla U(x_{\lambda})$$

Upper level:	$\min_{\substack{\lambda \ge 0, \hat{x}}} U(\hat{x})$	
Lower level : $x_{\lambda} := \hat{x} = \arg r$	$\min_{x} L(x, \lambda) \Leftrightarrow $	$\partial_x L(x_{\lambda}, \lambda) = 0$
Reduced formulation : $\min_{\lambda > 0} U(x_{\lambda}) =: \tilde{U}(\lambda)$		

$$0 = \partial_x^2 L(x_{\lambda}, \lambda) \partial_{\lambda} x_{\lambda} + \partial_{\theta} \partial_x L(x_{\lambda}, \lambda) \quad \Leftrightarrow \quad \partial_{\lambda} x_{\lambda} = -B^{-1}A$$

$$\nabla U(\lambda) = (\partial_{\lambda} x_{\lambda})^* \nabla U(x_{\lambda})$$
$$= -A^* B^{-1} \nabla U(x_{\lambda}) = -A^* w$$

where *w* solves $Bw = \nabla U(x_{\lambda})$.

Algorithm for Bi-level learning

Upper level: $\min_{\lambda \ge 0, \hat{x}} U(\hat{x})$

Lower level: $x_{\lambda} := \arg \min_{x} L(x, \lambda)$

Reduced formulation: $\min_{\lambda \ge 0} U(x_{\lambda}) =: \tilde{U}(\lambda)$

- Solve reduced formulation via L-BFGS-B Nocedal and Wright 2000
- Compute gradients: Given λ
 - (1) Compute x_{λ} , e.g. via PDHG Chambolle and Pock 2011
 - (2) Solve $Bw = \nabla U(x_{\lambda})$, $B := \partial_x^2 L(x_{\lambda}, \lambda)$ e.g. via CG
 - (3) Compute $\nabla \tilde{U}(\lambda) = -A^* w$, $A := \partial_{\theta} \partial_x L(x_{\lambda}, \lambda)$

Learn sampling pattern in MRI

Learn sampling pattern in MRI

Upper level (learning): Given training data $(x_i^{\dagger}, y_i)_{i=1}^n$, solve $\min_{\lambda \ge 0, s \in [0,1]^m} \frac{1}{n} \sum_{i=1}^n ||R(\lambda, s, y_i) - x_i^{\dagger}||_2^2$

Lower level (MRI reconstruction):

$$R(\lambda, s, y) = \arg\min_{x} \left\{ \frac{1}{2} \| \operatorname{diag}(s)(Fx - y) \|_{2}^{2} + \lambda \mathcal{R}(x) \right\}$$

Learn sampling pattern in MRI

Upper level (learning): Given training data $(x_i^{\dagger}, y_i)_{i=1}^n$, solve $\min_{\substack{\lambda \ge 0, s \in [0,1]^m}} \frac{1}{n} \sum_{i=1}^n \|R(\lambda, s, y_i) - x_i^{\dagger}\|_2^2 + \beta_1 \|s\|_1 + \beta_2 \|s(1-s)\|_1$

Lower level (MRI reconstruction):

$$R(\lambda, s, y) = \arg \min_{x} \left\{ \frac{1}{2} \| \operatorname{diag}(s)(Fx - y) \|_{2}^{2} + \lambda \mathcal{R}(x) \right\}$$

Classical compressed sensing versus learned

Increasing sparsity

Reminder: **Upper level** (learning) $\min_{\substack{\lambda \ge 0, s \in [0,1]^m}} \frac{1}{n} \sum_{i=1}^n \|R(\lambda, s, y_i) - x_i\|_2^2 + \beta_1 \|s\|_1 + \beta_2 \|s(1-s)\|_1$

Increasing sparsity parameter β

Compare regularizers

More insights: sampling and number of data

Sherry et al. 2019, https://arxiv.org/pdf/1906.08754.pdf

High resolution imaging: 1024²

Conclusions and outlook

Conclusions

- Be aware of **ill-posedness**: regularization is needed!
- ► Variational regularization: Tikhonov, Total Variation
- Some parameters are difficult to choose: regularization parameter, sampling
- Bi-level / machine learning is a way out!

Outlook

- Investigate other algorithms tailored to problem
 - ▶ DFO with errors in objective (joint work with Lindon Roberts)
 - not based on reduced formulation, e.g. nonlinear ADMM
- Unrolling: replace lower level problem by algorithm
- End-to-end learning: learn reconstruction and sampling