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2‖Ax − y‖2
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What are inverse problems?



What are inverse problems? Inverse to what?
Right to left:
forward problem (easy)

Left to right:
inverse problem (hard)

Ax = y

x : 3D image of hands

y : 2D shadow of hands

A : mathematical model

Goal: recover x given y



Example: Image Deblurring

traffic control astronomy cell biology

Model: Convolution Ax(t) = x ∗k(s) =
∫
R2

x(t)k(s−t)dt

→



Example: Magnetic Resonance Imaging (MRI)

clinical MRI scanner T ∗2 weighted MRI diffusion tensor imaging

Model: Fourier transform Ax(s) =

∫
R2

x(s) exp(−ist)dt

→



What is the problem with inverse problems?
MRI: Ax = y Ax(s) =

∫
R2

x(s) exp(−ist)dt

→

Hadamard (1902): We call an inverse problem
Ax = y well-posed if

(1) a solution x∗ exists

(2) the solution x∗ is unique

(3) x∗ depends continuously on data y .

Otherwise, it is called ill-posed. Jacques Hadamard

Most interesting problems are ill-posed.
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How to solve inverse problems?



How to solve inverse problems?

Variational regularization (∼2000)
Approximate a solution x∗ of Ax = y via

x̂ ∈ arg min
x

{
1

2
‖Ax − y‖2

2 + λR(x)

}

R regularizer: penalizes unwanted features and ensures stability

λ regularization parameter: λ ≥ 0. If λ = 0, then an original
solution is recovered. If λ→∞, more and more weight is
given to the regularizer R.

textbooks: Scherzer et al. 2008, Ito and Jin 2015, Benning and Burger 2018



Example: Regularizers

Tikhonov regularization (∼1960):
R(x) = 1

2‖x‖
2
2

x̂ = arg min
x

{
1

2
‖Ax − y‖2

2 +
λ

2
‖x‖2

2

}
Andrey Tikhonov

λ = 10−6 λ = 10−2 λ = 10−1 λ = 1 λ = 5

Total Variation regularization:
R(x) = ‖∇x‖1 Rudin, Osher, Fatemi 1992

x̂ ∈ arg min
x

{
1

2
‖Ax − y‖2

2 + λ‖∇x‖1

}
Stanley Osher

λ = 10−6 λ = 10−4 λ = 7 · 10−4 λ = 10−3 λ = 10−2
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Connection to PDEs

Total Variation regularization:
R(x) = ‖∇x‖1 Rudin, Osher, Fatemi 1992

x̂ ∈ arg min
x

{
1

2
‖Ax − y‖2

2 + λ‖∇x‖1

}
”Smooth” Total Variation regularization:

x̂ = arg min
x

{
1

2
‖Ax − y‖2

2 + λ

∫
ρ(∇x(s))ds +

ε

2
‖x‖2

2

}

⇔ (A∗A + εI )x̂ − λ div ρ′(∇x̂) = A∗y

I ρ(t) = ‖t‖2
2

⇒ linear PDE

I ρ(t) =
√
‖t‖2

2 + γ2 or Huber loss

⇒ nonlinear PDE

I strongly convex and smooth optimization problem
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Example: MRI reconstruction

Compressed Sensing MRI:
A = SΩ ◦ F Lustig, Donoho, Pauly 2007

Fourier transform F , sampling SΩw = w |Ω

x̂ ∈ arg min
x

{
1

2
‖SΩFx − y‖2

2 + λ‖∇x‖1

}
Miki Lustig

sampling S∗Ωy λ = 0

λ = 1

How to choose the sampling Ω? Is there an optimal sampling?

Does the optimal sampling depend on the regularizer R?
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Bi-level Learning



Bi-level learning for inverse problems

Upper level (learning):
Given (x†, y), y = Ax† + ε, solve

min
λ≥0,x̂

‖x̂ − x†‖2
2

Lower level (solve inverse problem):

x̂ = arg min
x

{
1

2
‖Ax − y‖2

2 + λR(x)

}

Carola Schönlieb

R smooth and
strongly convex

von Stackelberg 1934, Kunisch and Pock 2013, De los Reyes and Schönlieb 2013
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Bi-level learning for inverse problems

Upper level (learning):

Given (x†i , yi )
n
i=1, yi = Ax†i + εi , solve

min
λ≥0,x̂i

1

n

n∑
i=1

‖x̂i − x†i ‖
2
2

Lower level (solve inverse problem):

x̂i = arg min
x

{
1

2
‖Ax − yi‖2

2 + λR(x)

} Carola Schönlieb

R smooth and
strongly convex

von Stackelberg 1934, Kunisch and Pock 2013, De los Reyes and Schönlieb 2013



Bi-level learning for inverse problems: Reduced formulation

Upper level: min
λ≥0,x̂

‖x̂ − x†‖2
2

Lower level:

x̂ = arg min
x

{
1

2
‖Ax − y‖2

2 + λR(x)

}

Reduced formulation: min
λ≥0

U(xλ) =: Ũ(λ)

0 = ∂2
xL(xλ, λ)∂λxλ + ∂θ∂xL(xλ, λ) ⇔ ∂λxλ = −B−1A

∇Ũ(λ) = (∂λxλ)∗∇U(xλ)

= −A∗B−1∇U(xλ) = −A∗w

where w solves Bw = ∇U(xλ).
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∇Ũ(λ) = (∂λxλ)∗∇U(xλ)

= −A∗B−1∇U(xλ) = −A∗w

where w solves Bw = ∇U(xλ).



Bi-level learning for inverse problems: Reduced formulation

Upper level: min
λ≥0,x̂

U(x̂)

Lower level:

xλ :=

x̂ = arg min
x

L(x , λ)

⇔ ∂xL(xλ, λ) = 0

Reduced formulation: min
λ≥0

U(xλ) =: Ũ(λ)
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Algorithm for Bi-level learning

Upper level: minλ≥0,x̂ U(x̂)

Lower level: xλ := arg minx L(x , λ)

Reduced formulation: minλ≥0 U(xλ) =: Ũ(λ)

I Solve reduced formulation via L-BFGS-B Nocedal and Wright 2000

I Compute gradients: Given λ

(1) Compute xλ, e.g. via PDHG Chambolle and Pock 2011

(2) Solve Bw = ∇U(xλ), B := ∂2
xL(xλ, λ) e.g. via CG

(3) Compute ∇Ũ(λ) = −A∗w , A := ∂θ∂xL(xλ, λ)
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Learn sampling pattern in MRI

Upper level (learning):

Given training data (x†i , yi )
n
i=1, solve

min
λ≥0,s∈[0,1]m

1

n

n∑
i=1

‖R(λ, s, yi )− x†i ‖
2
2

+β1‖s‖1 + β2‖s(1− s)‖1

Lower level (MRI reconstruction):

R(λ, s, y) = arg min
x

{
1

2
‖diag(s)(Fx − y)‖2

2 + λR(x)

}
Sherry et al. 2019, https://arxiv.org/pdf/1906.08754.pdf

https://arxiv.org/pdf/1906.08754.pdf
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Classical compressed sensing versus learned

Sherry et al. 2019, https://arxiv.org/pdf/1906.08754.pdf

https://arxiv.org/pdf/1906.08754.pdf


Increasing sparsity

Reminder: Upper level (learning)

min
λ≥0,s∈[0,1]m

1

n

n∑
i=1

‖R(λ, s, yi )− xi‖2
2+β1‖s‖1 + β2‖s(1− s)‖1

Sherry et al. 2019, https://arxiv.org/pdf/1906.08754.pdf

https://arxiv.org/pdf/1906.08754.pdf


Compare regularizers

Sherry et al. 2019, https://arxiv.org/pdf/1906.08754.pdf

https://arxiv.org/pdf/1906.08754.pdf


More insights: sampling and number of data

Sherry et al. 2019, https://arxiv.org/pdf/1906.08754.pdf

https://arxiv.org/pdf/1906.08754.pdf


High resolution imaging: 10242

Sherry et al. 2019, https://arxiv.org/pdf/1906.08754.pdf

https://arxiv.org/pdf/1906.08754.pdf


Conclusions and outlook

Conclusions

I Be aware of ill-posedness: regularization is needed!

I Variational regularization: Tikhonov, Total Variation

I Some parameters are difficult to choose: regularization
parameter, sampling

I Bi-level / machine learning is a way out!

Outlook
I Investigate other algorithms tailored to problem

I DFO with errors in objective (joint work with Lindon Roberts)
I not based on reduced formulation, e.g. nonlinear ADMM

I Unrolling: replace lower level problem by algorithm

I End-to-end learning: learn reconstruction and sampling


