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1) Motivation

minx
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2‖SFx−y‖
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2+λR(x)

2) Bilevel Learning minx,y f (x , y)

x = arg minz g(z , y)

3) Learn sampling pattern in MRI



Inverse problems

Ax = y
x : desired solution

y : observed data

A : mathematical model

Goal: recover x given y

Hadamard (1902): We call an inverse problem
Ax = y well-posed if

(1) a solution x∗ exists

(2) the solution x∗ is unique

(3) x∗ depends continuously on data y .

Otherwise, it is called ill-posed. Jacques Hadamard

Most interesting problems are ill-posed.
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Example: Magnetic Resonance Imaging (MRI)

MRI scanner T ∗2

Continuous model: Fourier transform

Ax(s) =

∫
R2

x(s) exp(−ist)dt

Dicrete model: A = F ∈ CN×N

→

Solution not unique.
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How to solve inverse problems?

Variational regularization (∼2000)
Approximate a solution x∗ of Ax = y via

x̂ ∈ arg min
x

{
1

2
‖Ax − y‖2

2 + λR(x)

}

R regularizer: penalizes unwanted features, ensures stability
and uniqueness

λ regularization parameter: λ ≥ 0. If λ = 0, then an original
solution is recovered. If λ→∞, more and more weight is
given to the regularizer R.

textbooks: Scherzer et al. 2008, Ito and Jin 2015, Benning and Burger 2018



Example: Regularizers

Tikhonov regularization (∼1960):

R(x) =
1

2
‖x‖2
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Total Variation Rudin, Osher, Fatemi 1992

R(x) = ‖∇x‖1

S
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H1 (∼1960-1990?)

R(x) =
1

2
‖∇x‖2

2

Wavelet sparsity (∼1990)

R(x) = ‖Wx‖1

Total Generalized Variation: Bredies, Kunisch, Pock 2010

R(x) = inf
v
‖∇x − v‖1 + β‖∇v‖1
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Example: MRI reconstruction

Compressed Sensing MRI:
A = S ◦ F Lustig, Donoho, Pauly 2007

Fourier transform F , sampling Sw = (wi )i∈Ω

x̂ ∈ arg min
x

{
1

2
‖SFx − y‖2

2 + λ‖∇x‖1

}
Miki Lustig

sampling S∗y λ = 0

λ = 1

How to choose the sampling S? Is there an optimal sampling?

Does the optimal sampling depend on R and λ?
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Some important works on sampling for MRI
Uninformed
I Cartesian, radial, variable density ... e.g. Lustig et al. 2007

3 simple to implement
7 not tailored to application
7 not tailored to regularizer / reconstruction method

I compressed sensing theory: random sampling, mostly uniform
e.g. Candes and Romberg 2007

3 mathematical guarantees
7 limited to few sparsity promoting regularizers: mostly `1 type
7 specific yet uninformed class of recoverable signals: sparse

Learned
I Largest Fourier coefficients of training set Knoll et al. 2011

3 simple to implement, computationally light
7 not tailored to regularizer / reconstruction method

I greedy: iteratively select ”best” sample Gözcü et al. 2018

3 adaptive to dataset, regularizer / reconstruction method

7 only discrete values, e.g. can’t learn regularization parameter
7 computationally heavy
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Bilevel Learning



Bilevel learning for inverse problems

Upper level (learning):
Given (x†, y), y = Ax† + ε, solve

min
λ≥0,x̂

‖x̂ − x†‖2
2

Lower level (solve inverse problem):

x̂ = arg min
x

{
1

2
‖Ax − y‖2

2 + λR(x)

}

Carola Schönlieb

R smooth and
strongly convex

von Stackelberg 1934, Kunisch and Pock 2013, De los Reyes and Schönlieb 2013
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Bilevel learning for inverse problems

Upper level (learning):

Given (x†i , yi )
n
i=1, yi = Ax†i + εi , solve

min
λ≥0,x̂i

1

n

n∑
i=1

‖x̂i − x†i ‖
2
2

Lower level (solve inverse problem):

x̂i = arg min
x
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2
‖Ax − yi‖2

2 + λR(x)

} Carola Schönlieb

R smooth and
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Bilevel learning: Reduced formulation

Upper level: min
λ≥0,x̂

‖x̂ − x†‖2
2

Lower level:

x̂ = arg min
x

{
1

2
‖Ax − y‖2

2 + λR(x)

}

Reduced formulation: min
λ≥0

U(xλ) =: Ũ(λ)

0 = ∂2
xL(xλ, λ)∂λxλ + ∂θ∂xL(xλ, λ) ⇔ ∂λxλ = −B−1A

∇Ũ(λ) = (∂λxλ)∗∇U(xλ)

= −A∗B−1∇U(xλ) = −A∗w

where w solves Bw = ∇U(xλ).
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Algorithm for Bilevel learning

Upper level: minλ≥0,x̂ U(x̂)

Lower level: xλ := arg minx L(x , λ)

Reduced formulation: minλ≥0 U(xλ) =: Ũ(λ)

I Solve reduced formulation via L-BFGS-B Nocedal and Wright 2000

I Compute gradients: Given λ

(1) Compute xλ, e.g. via PDHG Chambolle and Pock 2011

(2) Solve Bw = ∇U(xλ), B := ∂2
xL(xλ, λ) e.g. via CG

(3) Compute ∇Ũ(λ) = −A∗w , A := ∂θ∂xL(xλ, λ)



Learn sampling pattern in MRI



Learn sampling pattern in MRI

Upper level (learning):

Given training data (x†i , yi )
n
i=1, solve

min
λ≥0,s∈{0,1}m

1

n

n∑
i=1

‖R(λ, s, yi )− x†i ‖
2
2

+β1‖s‖1 + β2‖s(1− s)‖1

Lower level (MRI reconstruction):

R(λ, s, y) = arg min
x

{
1

2
‖S(Fx − y)‖2

2 + λR(x)

}

S = diag(s), si ∈ {0, 1}

Sherry et al. 2019, https://arxiv.org/pdf/1906.08754.pdf

https://arxiv.org/pdf/1906.08754.pdf
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Classical compressed sensing versus learned

Sherry et al. 2019



Increasing sparsity

Reminder: Upper level (learning)

min
λ≥0,s∈[0,1]m

1

n

n∑
i=1

‖R(λ, s, yi )− xi‖2
2+β1‖s‖1 + β2‖s(1− s)‖1

β = β1 = β2

Sherry et al. 2019



Compare regularizers

Sherry et al. 2019



Compare ”free” samplings

”ours” = Sherry et al. 2019

[41] = Knoll et al. 2011

[2] = Lustig et al. 2007

regularizer = dTV Ehrhardt and Betcke 2016



Compare Cartesian samplings

”ours” = Sherry et al. 2019

[23] = Gözcü et al. 2018

[2] = Lustig et al. 2007

regularizer = TV



More insights: sampling and number of data

Sherry et al. 2019



High resolution imaging: 10242

Sherry et al. 2019



Conclusions and outlook

Conclusions

I Learn parameters via Bilevel / machine learning

I Learned sampling better than generic sampling

I ”Optimal” sampling depends on regularizer

I Very little data needed

Outlook
I Investigate other algorithms tailored to problem

I DFO with errors in objective (ongoing work with Lindon
Roberts)

I not based on reduced formulation, e.g. nonlinear ADMM

I Unrolling: replace lower level problem by algorithm

I End-to-end learning: learn reconstruction and sampling


