Learning the Sampling for MRI

Matthias J. Ehrhardt

Institute for Mathematical Innovation, University of Bath, UK

June 24, 2020

Joint work with:

F. Sherry, M. Graves, G. Maierhofer, G. Williams, C.-B. Schönlieb (all Cambridge, UK), M. Benning (Queen Mary, UK), J.C. De los Reyes (EPN, Ecuador)

The Leverhulme Trust

Engineering and Physical Sciences Research Council

Outline

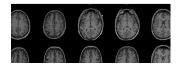
1) Motivation

 $\min_{x} \frac{1}{2} \|SFx - y\|_{2}^{2} + \lambda \mathcal{R}(x)$

2) Bilevel Learning

$$\min_{x,y} f(x,y)$$
$$x = \arg\min_{z} g(z,y)$$

3) Learn sampling pattern in MRI



Inverse problems

 $A\mathbf{x} = \mathbf{y}$

- x : desired solution
- y : observed data
- A : mathematical model

Goal: recover **X** given **Y**

Inverse problems

 $A\mathbf{x} = \mathbf{y}$

- x : desired solution
- y : observed data
- A : mathematical model

Goal: recover X given Y

Hadamard (1902): We call an inverse problem Ax = y well-posed if

- (1) a solution \mathbf{x}^* exists
- (2) the solution x^* is **unique**

(3) x^* depends **continuously** on data y.

Otherwise, it is called **ill-posed**.

Jacques Hadamard

Most interesting problems are **ill-posed**.

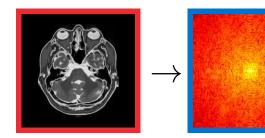
Example: Magnetic Resonance Imaging (MRI)

Continuous model: Fourier transform

$$A\mathbf{x}(s) = \int_{\mathbb{R}^2} \mathbf{x}(s) \exp(-ist) dt$$

Dicrete model: $A = F \in \mathbb{C}^{N \times N}$

MRI scanner



Example: Magnetic Resonance Imaging (MRI)

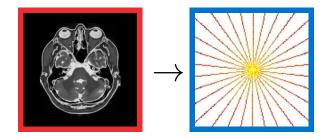
MRI scanner

15

Continuous model: Fourier transform

$$A\mathbf{x}(s) = \int_{\mathbb{R}^2} \mathbf{x}(s) \exp(-ist) dt$$

Dicrete model: $A = SF \in \mathbb{C}^{n \times N}$



Solution not unique.

How to solve inverse problems?

Variational regularization (\sim 2000) Approximate a solution x^* of Ax = y via

$$\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \left\{ \frac{1}{2} \|A\mathbf{x} - \mathbf{y}\|_2^2 + \lambda \mathcal{R}(\mathbf{x}) \right\}$$

- *R* regularizer: penalizes unwanted features, ensures stability and uniqueness
- λ regularization parameter: $\lambda \ge 0$. If $\lambda = 0$, then an original solution is recovered. If $\lambda \to \infty$, more and more weight is given to the regularizer \mathcal{R} .

textbooks: Scherzer et al. 2008, Ito and Jin 2015, Benning and Burger 2018

Example: Regularizers

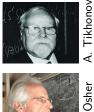
Tikhonov regularization (~1960): $\mathcal{R}(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|_2^2$

Example: Regularizers

Tikhonov regularization (~1960):
$$\mathcal{R}(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|_2^2$$

Total Variation Rudin, Osher, Fatemi 1992

 $\mathcal{R}(\mathbf{x}) = \|\nabla \mathbf{x}\|_1$



$$\mathcal{H}^1$$
 (~1960-1990?)
 $\mathcal{R}(x) = \frac{1}{2} \|\nabla x\|_2^2$

Wavelet sparsity (\sim 1990) $\mathcal{R}(\mathbf{x}) = \|W\mathbf{x}\|_1$

Total Generalized Variation: Bredies, Kunisch, Pock 2010 $\mathcal{R}(\mathbf{x}) = \inf_{\mathbf{v}} \|\nabla \mathbf{x} - \mathbf{v}\|_1 + \beta \|\nabla \mathbf{v}\|_1$

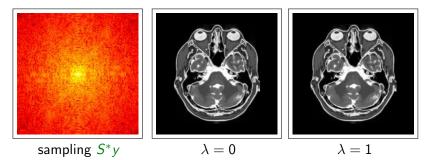
Compressed Sensing MRI:

$$\begin{split} A &= S \circ F \text{ Lustig, Donoho, Pauly 2007} \\ \text{Fourier transform } F \text{, sampling } Sw &= (w_i)_{i \in \Omega} \\ \hat{x} \in \arg\min_{x} \left\{ \frac{1}{2} \|SFx - y\|_2^2 + \lambda \|\nabla x\|_1 \right\} \end{split}$$

Miki Lustig

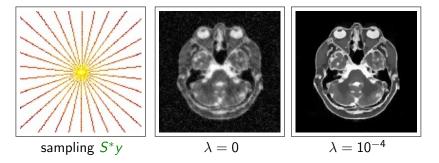
Compressed Sensing MRI:

$$\begin{split} A &= S \circ F \text{ Lustig, Donoho, Pauly 2007} \\ \text{Fourier transform } F \text{, sampling } Sw = (w_i)_{i \in \Omega} \\ \hat{x} &\in \arg\min_{x} \left\{ \frac{1}{2} \|SFx - y\|_2^2 + \lambda \|\nabla x\|_1 \right\} \end{split}$$



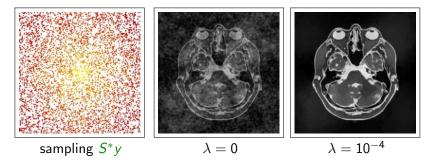
Compressed Sensing MRI:

 $\begin{aligned} A &= S \circ F \text{ Lustig, Donoho, Pauly 2007} \\ \text{Fourier transform } F \text{, sampling } Sw &= (w_i)_{i \in \Omega} \\ \hat{x} \in \arg\min_{x} \left\{ \frac{1}{2} \|SFx - y\|_{2}^{2} + \lambda \|\nabla x\|_{1} \right\} \end{aligned}$



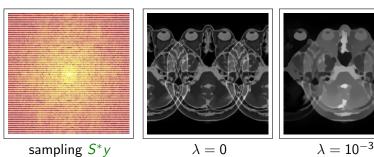
Compressed Sensing MRI:

 $\begin{aligned} A &= S \circ F \text{ Lustig, Donoho, Pauly 2007} \\ \text{Fourier transform } F \text{, sampling } Sw &= (w_i)_{i \in \Omega} \\ \hat{x} \in \arg\min_{x} \left\{ \frac{1}{2} \|SFx - y\|_{2}^{2} + \lambda \|\nabla x\|_{1} \right\} \end{aligned}$



Compressed Sensing MRI:

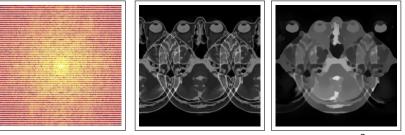
$$\begin{split} A &= S \circ F \text{ Lustig, Donoho, Pauly 2007} \\ \text{Fourier transform } F \text{, sampling } Sw &= (w_i)_{i \in \Omega} \\ \hat{x} \in \arg\min_{x} \left\{ \frac{1}{2} \|SFx - y\|_2^2 + \lambda \|\nabla x\|_1 \right\} \end{split}$$



Compressed Sensing MRI:

 $\begin{aligned} A &= S \circ F \text{ Lustig, Donoho, Pauly 2007} \\ \text{Fourier transform } F \text{, sampling } Sw &= (w_i)_{i \in \Omega} \\ \hat{x} \in \arg\min_{x} \left\{ \frac{1}{2} \|SFx - y\|_2^2 + \lambda \|\nabla x\|_1 \right\} \end{aligned}$

Miki Lustig



sampling S^*y

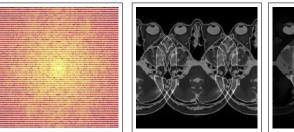
 $\lambda = 10^{-3}$

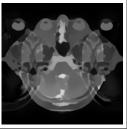
How to choose the sampling S? Is there an optimal sampling?

Compressed Sensing MRI:

 $\begin{aligned} A &= S \circ F \text{ Lustig, Donoho, Pauly 2007} \\ \text{Fourier transform } F \text{, sampling } Sw &= (w_i)_{i \in \Omega} \\ \hat{x} \in \arg\min_{x} \left\{ \frac{1}{2} \|SFx - y\|_2^2 + \lambda \|\nabla x\|_1 \right\} \end{aligned}$

Miki Lustig





 $\begin{array}{ll} \text{sampling } S^*y & \lambda = 0 & \lambda = 10^{-3} \\ \text{How to choose the sampling } S? \text{ Is there an optimal sampling?} \\ \text{Does the optimal sampling depend on } \mathcal{R} \text{ and } \lambda? \end{array}$

Some important works on sampling for MRI

Uninformed

► Cartesian, radial, variable density ... e.g. Lustig et al. 2007

- simple to implement
- X not tailored to application
- X not tailored to regularizer / reconstruction method
- compressed sensing theory: random sampling, mostly uniform
 - e.g. Candes and Romberg 2007
 - mathematical guarantees
 - ig
 angle limited to few sparsity promoting regularizers: mostly ℓ^1 type
 - specific yet uninformed class of recoverable signals: sparse

Some important works on sampling for MRI

Uninformed

► Cartesian, radial, variable density ... e.g. Lustig et al. 2007

- simple to implement
- × not tailored to application
- × not tailored to regularizer / reconstruction method
- compressed sensing theory: random sampling, mostly uniform
 - e.g. Candes and Romberg 2007
 - mathematical guarantees
 - \checkmark limited to few sparsity promoting regularizers: mostly ℓ^1 type
 - × specific yet uninformed class of recoverable signals: sparse

Learned

Largest Fourier coefficients of training set Knoll et al. 2011

 simple to implement, computationally light
 not tailored to regularizer / reconstruction method

 greedy: iteratively select "best" sample Gözcü et al. 2018

 adaptive to dataset, regularizer / reconstruction method
 only discrete values, e.g. can't learn regularization parameter
 computationally heavy

Bilevel Learning

Bilevel learning for inverse problems

$$\hat{\mathbf{x}} = \arg\min_{x} \left\{ \frac{1}{2} \|Ax - y\|_{2}^{2} + \lambda \mathcal{R}(x) \right\}$$

 ${\mathcal R}$ smooth and strongly convex

Bilevel learning for inverse problems

Upper level (learning): Given $(x^{\dagger}, y), y = Ax^{\dagger} + \varepsilon$, solve

 $\min_{\substack{\lambda \ge 0, \hat{x}}} \|\hat{x} - x^{\dagger}\|_2^2$

Lower level (solve inverse problem): $\hat{x} = \arg \min_{x} \left\{ \frac{1}{2} \|Ax - y\|_{2}^{2} + \lambda \mathcal{R}(x) \right\}$

Carola Schönlieb \mathcal{R} smooth and strongly convex

von Stackelberg 1934, Kunisch and Pock 2013, De los Reyes and Schönlieb 2013

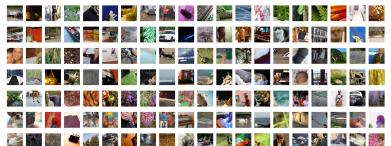
Bilevel learning for inverse problems

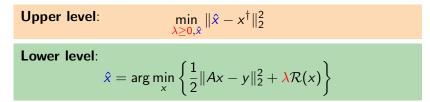
Upper level (learning): Given $(x_i^{\dagger}, y_i)_{i=1}^n, y_i = Ax_i^{\dagger} + \varepsilon_i$, solve $\min_{\lambda \ge 0, \hat{x}_i} \frac{1}{n} \sum_{i=1}^n \|\hat{x}_i - x_i^{\dagger}\|_2^2$

Lower level (solve inverse problem): $\hat{x}_i = \arg \min_{x} \left\{ \frac{1}{2} \|Ax - y_i\|_2^2 + \lambda \mathcal{R}(x) \right\}$

Carola Schönlieb \mathcal{R} smooth and strongly convex

von Stackelberg 1934, Kunisch and Pock 2013, De los Reyes and Schönlieb 2013

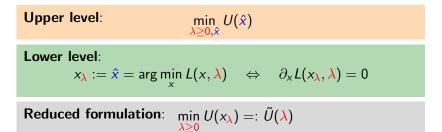


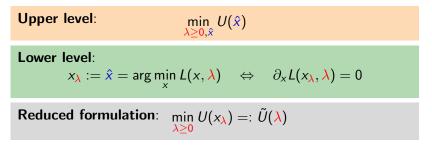


Upper level: $\begin{array}{l} \underset{\lambda \ge 0, \hat{x}}{\min} U(\hat{x}) \\
\text{Lower level:} \\
\hat{x} = \arg \min_{x} \left\{ \frac{1}{2} \|Ax - y\|_{2}^{2} + \lambda \mathcal{R}(x) \right\}
\end{array}$

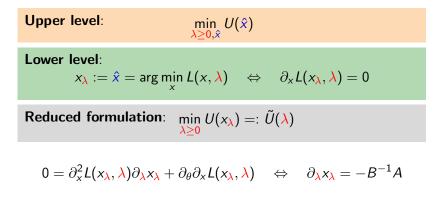
Upper level: $\min_{\lambda \ge 0, \hat{x}} U(\hat{x})$ Lower level: $\hat{x} = \arg\min_{x} L(x, \lambda)$



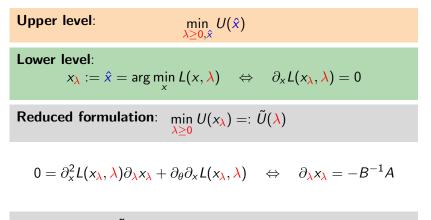




$$0 = \partial_x^2 L(x_{\lambda}, \lambda) \partial_{\lambda} x_{\lambda} + \partial_{\theta} \partial_x L(x_{\lambda}, \lambda) \quad \Leftrightarrow \quad \partial_{\lambda} x_{\lambda} = -B^{-1}A$$



 $\nabla \tilde{U}(\lambda) = (\partial_{\lambda} x_{\lambda})^* \nabla U(x_{\lambda})$



$$\nabla U(\lambda) = (\partial_{\lambda} x_{\lambda})^* \nabla U(x_{\lambda})$$
$$= -A^* B^{-1} \nabla U(x_{\lambda}) = -A^* w$$

where w solves $Bw = \nabla U(x_{\lambda})$.

Algorithm for Bilevel learning

Upper level: $\min_{\lambda \ge 0, \hat{x}} U(\hat{x})$

Lower level: $x_{\lambda} := \arg \min_{x} L(x, \lambda)$

Reduced formulation: $\min_{\lambda \ge 0} U(x_{\lambda}) =: \tilde{U}(\lambda)$

- Solve reduced formulation via L-BFGS-B Nocedal and Wright 2000
- Compute gradients: Given λ
 - (1) Compute x_{λ} , e.g. via PDHG Chambolle and Pock 2011
 - (2) Solve $Bw = \nabla U(x_{\lambda})$, $B := \partial_x^2 L(x_{\lambda}, \lambda)$ e.g. via CG
 - (3) Compute $\nabla \tilde{U}(\lambda) = -A^* w$, $A := \partial_{\theta} \partial_x L(x_{\lambda}, \lambda)$

Lower level (MRI reconstruction): $R(\lambda, s, y) = \arg \min_{x} \left\{ \frac{1}{2} \|S(Fx - y)\|_{2}^{2} + \lambda \mathcal{R}(x) \right\}$

$$S = \mathsf{diag}(s), \quad s_i \in \{0, 1\}$$

Upper level (learning): Given training data $(x_i^{\dagger}, y_i)_{i=1}^n$, solve $\min_{\lambda \ge 0, s \in \{0,1\}^m} \frac{1}{n} \sum_{i=1}^n \|R(\lambda, s, y_i) - x_i^{\dagger}\|_2^2$

Lower level (MRI reconstruction): $R(\lambda, s, y) = \arg \min_{x} \left\{ \frac{1}{2} \|S(Fx - y)\|_{2}^{2} + \lambda \mathcal{R}(x) \right\}$

 $S = \operatorname{diag}(s), \quad s_i \in \{0, 1\}$

Upper level (learning): Given training data $(x_i^{\dagger}, y_i)_{i=1}^n$, solve $\min_{\lambda \ge 0, s \in [0,1]^m} \frac{1}{n} \sum_{i=1}^n ||R(\lambda, s, y_i) - x_i^{\dagger}||_2^2$

Lower level (MRI reconstruction): $R(\lambda, s, y) = \arg \min_{x} \left\{ \frac{1}{2} \|S(Fx - y)\|_{2}^{2} + \lambda \mathcal{R}(x) \right\}$

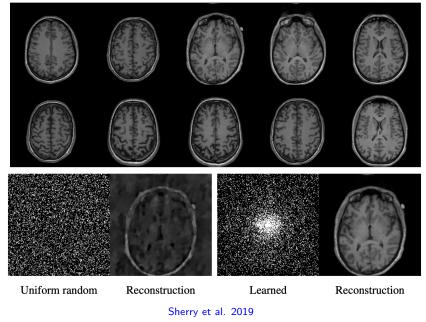
$$S = \operatorname{diag}(s), \quad s_i \in [0, 1]$$

Upper level (learning): Given training data $(x_i^{\dagger}, y_i)_{i=1}^n$, solve $\min_{\lambda \ge 0, s \in [0,1]^m} \frac{1}{n} \sum_{i=1}^n \|R(\lambda, s, y_i) - x_i^{\dagger}\|_2^2 + \beta_1 \|s\|_1 + \beta_2 \|s(1-s)\|_1$

Lower level (MRI reconstruction): $R(\lambda, s, y) = \arg \min_{x} \left\{ \frac{1}{2} \|S(Fx - y)\|_{2}^{2} + \lambda \mathcal{R}(x) \right\}$

$$S = \operatorname{diag}(s), \quad s_i \in [0, 1]$$

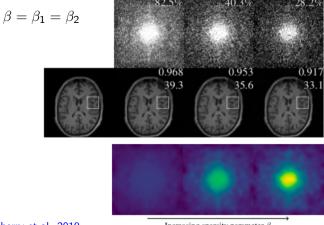
Classical compressed sensing versus learned



Increasing sparsity

Reminder: **Upper level** (learning)

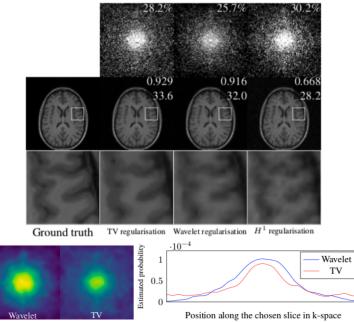
$$\min_{\substack{\lambda \ge 0, s \in [0,1]^m}} \frac{1}{n} \sum_{i=1}^n \|R(\lambda, s, y_i) - x_i\|_2^2 + \beta_1 \|s\|_1 + \beta_2 \|s(1-s)\|_1$$



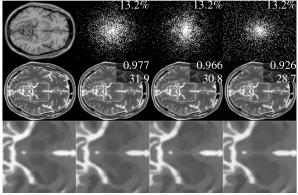
Sherry et al. 2019

Increasing sparsity parameter β

Compare regularizers



Compare "free" samplings



Ground truth Our learned pattern Pattern from [41]

Pattern f	rom [2
-----------	-------	---

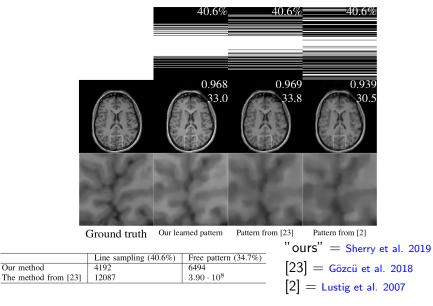
	Pattern type	SSIM	PSNR
Training	Our method	0.977 ± 0.002	32.5 ± 0.2
	Data-adapted [41]	0.968 ± 0.002	31.1 ± 0.1
	Uninformed VDS [2]	0.925 ± 0.005	28.9 ± 0.1
Testing	Our method	0.975 ± 0.003	32.1 ± 0.2
	Data-adapted [41]	0.967 ± 0.003	31.1 ± 0.2
	Uninformed VDS [2]	0.924 ± 0.003	28.8 ± 0.1

"ours" = Sherry et al. 2019 [41] = Knoll et al. 2011 [2] = Lustig et al. 2007

$regularizer = dTV \ {\tt Ehrhardt} \ {\tt and} \ {\tt Betcke} \ {\tt 2016}$

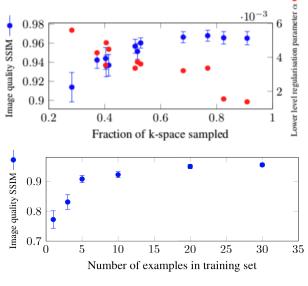
Compare Cartesian samplings

Our method



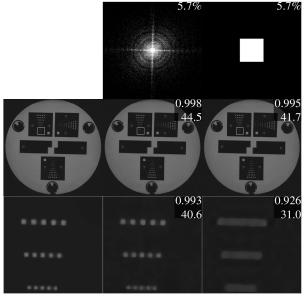
regularizer = TV

More insights: sampling and number of data



Sherry et al. 2019

High resolution imaging: 1024²



Sherry et al. 2019

Conclusions and outlook

Conclusions

- Learn parameters via Bilevel / machine learning
- Learned sampling better than generic sampling
- "Optimal" sampling depends on regularizer
- Very little data needed

Outlook

- Investigate other algorithms tailored to problem
 - DFO with errors in objective (ongoing work with Lindon Roberts)
 - not based on reduced formulation, e.g. nonlinear ADMM
- Unrolling: replace lower level problem by algorithm
- End-to-end learning: learn reconstruction and sampling