
Structure Preserving Deep Learning

Matthias J. Ehrhardt

Institute for Mathematical Innovation, University of Bath, UK

January 27, 2021

Joint work with:
M. Benning (Queen Mary, UK), C. Etmann, C.-B. Schönlieb, F. Sherry (all
Cambridge, UK), E. Celledoni, B. Owren (both NTNU, Norway), R. McLachlan
(Massey, New Zealand)



Outline

Towards deep learning with guarantees: stability, invertibility,
equivariance, invariance, existence of solutions

1) Deep learning and differential
equations: Optimal control, stabil-
ity and deep limits

2) Structure preserving deep neu-
ral networks: Equivariance and In-
vertibility

[1] Celledoni, MJE, Etmann, McLachlan, Owren, Schönlieb, Sherry, “Structure

preserving deep learning,” arxiv:2006.03364, 2020.

[2] Benning, Celledoni, MJE, Owren, and Schönlieb, “Deep learning as optimal control

problems: models and numerical methods,” J. Comput. Dyn. 6(2) 2019.

[3] Haber and Ruthotto, “Stable architectures for deep neural networks,” Inverse

Probl. 34(1) 2018.



Outline

Towards deep learning with guarantees: stability, invertibility,
equivariance, invariance, existence of solutions

1) Deep learning and differential
equations: Optimal control, stabil-
ity and deep limits

2) Structure preserving deep neu-
ral networks: Equivariance and In-
vertibility

[1] Celledoni, MJE, Etmann, McLachlan, Owren, Schönlieb, Sherry, “Structure

preserving deep learning,” arxiv:2006.03364, 2020.

[2] Benning, Celledoni, MJE, Owren, and Schönlieb, “Deep learning as optimal control

problems: models and numerical methods,” J. Comput. Dyn. 6(2) 2019.

[3] Haber and Ruthotto, “Stable architectures for deep neural networks,” Inverse

Probl. 34(1) 2018.



Classification with Deep Learning

Figure courtesy of L. Ruthotto.

I labeled training data (xk , yk)k=1,...,K

I transform data with hidden layers

I perform linear classification

I generalization to unseen data



Deep Learning / Deep Neural Networks (DNN)

I input layer: given data, features, e.g. image of dog
I hidden layers: transform data
I output layer classification result, e.g. label “dog”

I invented in the 50’s
I recent success by massive data and computing power
I applications: image classification, face recognition, self-driving

cars, . . .



Deep Learning / Deep Neural Networks (DNN)

I input layer: given data, features, e.g. image of dog
I hidden layers: transform data
I output layer classification result, e.g. label “dog”

I invented in the 50’s
I recent success by massive data and computing power
I applications: image classification, face recognition, self-driving

cars, . . .



Deep Learning / Deep Neural Networks (DNN)

I input layer: given data, features, e.g. image of dog
I hidden layers: transform data
I output layer classification result, e.g. label “dog”

I invented in the 50’s
I recent success by massive data and computing power
I applications: image classification, face recognition, self-driving

cars, . . .



Mathematical Formulation of Deep Learning

I input layer: x0 ∈ Rn

I hidden layers {xk}k=1,...,K , K depth/number of layers of
DNN, forward propagation

xk+1 = σ(Akxk + bk)

activation function: σ : R→ R applied component-wise, e.g.
σ(x) = tanh(x), ReLU: σ(x) = max(x , 0)



Mathematical Formulation of Deep Learning

I output layer y ∈ Sm−1, classification result, e.g. m = 2,
y = [1, 0] may correspond to “dog”

y = τ(WxK + ω)

τ : Rm → Rm, e.g. soft-max:

τ(x)i =
exp(xi )∑
j exp(xj)



Supervised Learning with Deep Neural Networks

Figure courtesy of L. Ruthotto.

The Learning Problem

Given training data (xn, yn)n=1,...,N find A = {Ak}k=1,...,K ,
b = {bk}k=1,...,K , W , ω that solve

min
A,b,W ,ω

N∑
n=1

‖τ(WxKn + ω)− yn‖2 + R(A, b,W , ω)

s.t. xk+1
n = σ(Akxkn + bk), x0

n = xn

I Quality of learning measured by generalization



Word of warning

Deep learning is great, but ...

I need a lot of data

I difficult to train

I can be fooled

I ...

Deep learning needs ...

I mathematical guarantees

I explainable models

I ...

https://ai.googleblog.com/2018/09/

introducing-unrestricted-adversarial.html

https://ai.googleblog.com/2018/09/introducing-unrestricted-adversarial.html
https://ai.googleblog.com/2018/09/introducing-unrestricted-adversarial.html


Deep Learning meets Optimal Control



Deep Residual Neural Networks (ResNet)
I “Standard” Neural Networks

xk+1 = σ(Akxk + bk)

I Deep Residual Neural Networks
(ResNet) He, Zhang, Ren, Sun 2015

(> 68000 citations on GoogleScholar)

xk+1 = xk + ∆t σ(Akxk + bk)

Linking ResNet with ODEs

ResNet is Forward Euler discretization ẋ(t) ≈ x(t+∆t)−x(t)
∆t of

ẋ(t) = σ(A(t)x(t) + b(t)), t ∈ [0,T ]

with continuous-time mappings A, b. xk := x(k∆t) ...

Haber and Ruthotto 2018, Li et al. 2018, Benning et al. 2019, ...



Optimal Control meets for Deep Learning

The Optimal Control Learning Problem

Given training data (xn, yn)n=1,...,N find A : [0,T ]→ RM×M ,
b : [0,T ]→ RM , W , ω that solve

min
A,b,W ,ω

N∑
n=1

‖τ(Wxn(T ) + ω)− yn‖2 + R(A, b,W , ω)

s.t. ẋn = σ(Axn + b), xn(0) = xn



Potential advantages from Optimal Control / ODEs

I Rich theory (see stability in a bit)

I New architectures

I New models, e.g. parametrization, regularization

I Advanced algorithms, e.g. Multi-resolution Learning

I ...



Utilize ODE knowledge



Stability and Generalization

I x1 similar to x2, then x1(T ) should be similar to x2(T ).
Otherwise instability to small errors prevents generalization.

I Examples. σ(y) = y , b = 0

A+ =

(
2 −2
0 2

)
, A− =

(
−2 0
2 −2

)
, A0 =

(
0 −1
1 0

)

Haber and Ruthotto 2018



Stability and Generalization

Theorem (very old)

The autonomous ODE ẋ = f (x) is stable if the real parts of the
eigenvalues of the Jacobian Df are non-positive.

Corollary

Let σ̇ ≥ 0. Then forward propagation is stable if Re(λ(A)) ≤ 0.

I Examples. σ(y) = y , b = 0

λ(A+) = (2, 2), λ(A−) = (−2,−2), λ(A0) = (i ,−i)

Haber and Ruthotto 2018



New Unconditionally Stable Architectures

I ResNet with antisymmetric
transformation matrix

ẋ = σ
(

(A− AT )x + b
)

I Hamiltonian inspired Network:
ResNet with auxiliary variable
and antisymmetric matrix(
ẋ
ż

)
= σ

((
0 A
−AT 0

)(
x
z

)
+ b

)
x(0) = x0, z(0) = 0

Haber and Ruthotto 2018

Problem: this statement is only true for autonomous systems!
If the vector-field f depends on time, then similar statements are

true but the theory is rather weak.



New Unconditionally Stable Architectures

I ResNet with antisymmetric
transformation matrix

ẋ = σ
(

(A− AT )x + b
)

I Hamiltonian inspired Network:
ResNet with auxiliary variable
and antisymmetric matrix(
ẋ
ż

)
= σ

((
0 A
−AT 0

)(
x
z

)
+ b

)
x(0) = x0, z(0) = 0

Haber and Ruthotto 2018

Problem: this statement is only true for autonomous systems!
If the vector-field f depends on time, then similar statements are

true but the theory is rather weak.



Revisiting Stability

Consider Φθ(u) = u(T ) with u solving u̇(t) = f (t, u(t)), t ∈ [0,T ]

What is a useful definition of stability for neural networks?

Definition (Stability 1: Lipschitz)

There exists C > 0 such that for all u, v we have

‖Φθ(u)− Φθ(v)‖ ≤ C‖u − v‖ (Lip)

Definition (Stability 2: Non-expansive)

For all u, v (Lip) holds with C = 1.



When is Φθ stable?
Recall Φθ(u) = u(T ) with u solving u̇(t) = f (t, u(t)), t ∈ [0,T ]

I Arguments based on Lipschitz continuity of f
I If f (t, ·) being L-Lipschitz, e.g. f (t, u) = σ(A(t)u + b(t)) with

σ being S-Lipschitz and A continuous, then Def 1 holds with

C = exp(T · L) (= exp(T · S max
t
‖A(t)‖)).

Can’t satisfy Def 2 since C > 1 for all non-trivial cases.
I Arguments based on ”one-sided” Lipschitz continuity of f

〈f (t, u1)− f (t, u2), u1 − u2〉 ≤ ν‖u1 − u2‖2

I If f is L-Lipschitz, then f is ”one-sided” Lipschitz with ν = L

〈f (t, u1)− f (t, u2), u1 − u2〉 ≤ ‖f (t, u1)− f (t, u2)‖‖u1 − u2‖
≤ L‖u1 − u2‖2

I Then Ψθ is Lipschitz with C = exp(T · ν).

Catch: ν can be non-positive, ν ≤ 0. Thus may satisfy Def 2

Celledoni et al. 2020, Zhang and Schaeffer 2020



When is Φθ stable?
Recall Φθ(u) = u(T ) with u solving u̇(t) = f (t, u(t)), t ∈ [0,T ]

I Arguments based on Lipschitz continuity of f
I If f (t, ·) being L-Lipschitz, e.g. f (t, u) = σ(A(t)u + b(t)) with

σ being S-Lipschitz and A continuous, then Def 1 holds with

C = exp(T · L) (= exp(T · S max
t
‖A(t)‖)).

Can’t satisfy Def 2 since C > 1 for all non-trivial cases.

I Arguments based on ”one-sided” Lipschitz continuity of f

〈f (t, u1)− f (t, u2), u1 − u2〉 ≤ ν‖u1 − u2‖2

I If f is L-Lipschitz, then f is ”one-sided” Lipschitz with ν = L

〈f (t, u1)− f (t, u2), u1 − u2〉 ≤ ‖f (t, u1)− f (t, u2)‖‖u1 − u2‖
≤ L‖u1 − u2‖2

I Then Ψθ is Lipschitz with C = exp(T · ν).

Catch: ν can be non-positive, ν ≤ 0. Thus may satisfy Def 2

Celledoni et al. 2020, Zhang and Schaeffer 2020



When is Φθ stable?
Recall Φθ(u) = u(T ) with u solving u̇(t) = f (t, u(t)), t ∈ [0,T ]

I Arguments based on Lipschitz continuity of f
I If f (t, ·) being L-Lipschitz, e.g. f (t, u) = σ(A(t)u + b(t)) with

σ being S-Lipschitz and A continuous, then Def 1 holds with

C = exp(T · L) (= exp(T · S max
t
‖A(t)‖)).

Can’t satisfy Def 2 since C > 1 for all non-trivial cases.
I Arguments based on ”one-sided” Lipschitz continuity of f

〈f (t, u1)− f (t, u2), u1 − u2〉 ≤ ν‖u1 − u2‖2

I If f is L-Lipschitz, then f is ”one-sided” Lipschitz with ν = L

〈f (t, u1)− f (t, u2), u1 − u2〉 ≤ ‖f (t, u1)− f (t, u2)‖‖u1 − u2‖
≤ L‖u1 − u2‖2

I Then Ψθ is Lipschitz with C = exp(T · ν).

Catch: ν can be non-positive, ν ≤ 0. Thus may satisfy Def 2

Celledoni et al. 2020, Zhang and Schaeffer 2020



When is Φθ stable?
Recall Φθ(u) = u(T ) with u solving u̇(t) = f (t, u(t)), t ∈ [0,T ]

I Arguments based on Lipschitz continuity of f
I If f (t, ·) being L-Lipschitz, e.g. f (t, u) = σ(A(t)u + b(t)) with

σ being S-Lipschitz and A continuous, then Def 1 holds with

C = exp(T · L) (= exp(T · S max
t
‖A(t)‖)).

Can’t satisfy Def 2 since C > 1 for all non-trivial cases.
I Arguments based on ”one-sided” Lipschitz continuity of f

〈f (t, u1)− f (t, u2), u1 − u2〉 ≤ ν‖u1 − u2‖2

I If f is L-Lipschitz, then f is ”one-sided” Lipschitz with ν = L

〈f (t, u1)− f (t, u2), u1 − u2〉 ≤ ‖f (t, u1)− f (t, u2)‖‖u1 − u2‖
≤ L‖u1 − u2‖2

I Then Ψθ is Lipschitz with C = exp(T · ν).
Catch: ν can be non-positive, ν ≤ 0. Thus may satisfy Def 2

Celledoni et al. 2020, Zhang and Schaeffer 2020



Sufficient Conditions for Stability
Recall, Φθ(u) = u(T ) with u solving u̇(t) = f (t, u(t)), t ∈ [0,T ]
”one-sided” Lipschitz continuity of f

〈f (t, u1)− f (t, u2), u1 − u2〉 ≤ ν‖u1 − u2‖2 (1)

Theorem
I Let Vt(u) be twice differentiable and convex. Then

f (t, u) = −∇Vt(u) satisfies the one-sided Lipschitz condition
for some ν ≤ 0.

I Let 0 ≤ σ′ ≤ 1 almost everywhere. Then

f (t, u) = −A∗(t)σ(A(t)u + b(t))

satisfies the one-sided Lipschitz condition with −µ2
∗ ≤ ν ≤ 0

where µ∗ := inft µ(t) and µ(t) is the smallest singular value
of A(t).

Celledoni et al. 2020, Zhang and Schaeffer 2020



Examples: Forward propagation with ResNet

videos?
Celledoni et al. 2020



Examples: Different Runge-Kutta methods

Benning et al. 2019



Examples: Learn time steps

xk+1 = xk + ∆tkσ(Akxk + bk)
ODENet: Estimate (∆tk ,Ak , bk)
Simplex constraint: ∆tk ≥ 0,

∑
k ∆tk = T

Benning et al. 2019



Examples: Learn time steps
xk+1 = xk + ∆tkσ(Akxk + bk)
ODENet: Estimate (∆tk ,Ak , bk)
Simplex constraint: ∆tk ≥ 0,

∑
k ∆tk = T

Benning et al. 2019



Deep Limits: Number of Layers K →∞ Thorpe and van Gennip 2018

Interpret discrete parameters as piecewise constant functions on [0,T ]

Discrete Learning Problem

Find θK := (Ak , bk)k=1,...,K which minimize EK : L2(µK )→ R,

EK (θ) =
∑K

k=1 ‖xKn − yn‖2 + RK (θ) such that

xk+1
n = xkn +

T

K
σ(Akxkn + bk), x0

n = xn

Continuous Learning Problem

Find θ∞ := (A : [0,T ]→ RM×M , b : [0,T ]→ RM) which minimize
E∞ : H1 → R, E (θ) =

∑K
k=1 ‖xn(T )− yn‖2 + R(θ) such that

ẋn = σ(Axn + b), xn(0) = xn

Theorem

RK ,R suitable regularization and σ Lipschitz with σ(0) = 0.
Then 1) minimizers exist, 2) minimal values converge and 3)
{θK}K∈N ⊂ L2 compact and any limit point is a minimizer of E .



Deep Limits: Number of Layers K →∞ Thorpe and van Gennip 2018

Interpret discrete parameters as piecewise constant functions on [0,T ]

Discrete Learning Problem

Find θK := (Ak , bk)k=1,...,K which minimize EK : L2(µK )→ R,

EK (θ) =
∑K

k=1 ‖xKn − yn‖2 + RK (θ) such that

xk+1
n = xkn +

T

K
σ(Akxkn + bk), x0

n = xn

Continuous Learning Problem

Find θ∞ := (A : [0,T ]→ RM×M , b : [0,T ]→ RM) which minimize
E∞ : H1 → R, E (θ) =

∑K
k=1 ‖xn(T )− yn‖2 + R(θ) such that

ẋn = σ(Axn + b), xn(0) = xn

Theorem

RK ,R suitable regularization and σ Lipschitz with σ(0) = 0.
Then 1) minimizers exist, 2) minimal values converge and 3)
{θK}K∈N ⊂ L2 compact and any limit point is a minimizer of E .



Enforcing Structure in Neural Networks



Invertible Neural Networks
Consider a neural network Ψ : X → X ,Ψ(x) = (fK ◦ ... ◦ f1)(x)
If fi are invertible, then so is Ψ and Ψ−1(x) = (f −1

1 ◦ ... ◦ f −1
K )(x)

What are invertible networks useful for?
I memory efficient backpropagation (computing derivatives):

can be implemented as O(1) rather than O(K )
I generative modeling: Usually learn Ψθ such that

x ∼ (Ψθ)∗µ with PDF of µ being q. Easy to sample from
(Ψθ)∗µ but PDF unknown.
If Ψθ is invertible, then (Ψθ)∗µ has PDF

x 7→ q(Ψ−1
θ (x))| det JΨ−1

θ (x)|

Chen et al. 2019



Invertible Neural Networks
Consider a neural network Ψ : X → X ,Ψ(x) = (fK ◦ ... ◦ f1)(x)
If fi are invertible, then so is Ψ and Ψ−1(x) = (f −1

1 ◦ ... ◦ f −1
K )(x)

What are invertible networks useful for?
I memory efficient backpropagation (computing derivatives):

can be implemented as O(1) rather than O(K )

I generative modeling: Usually learn Ψθ such that
x ∼ (Ψθ)∗µ with PDF of µ being q. Easy to sample from
(Ψθ)∗µ but PDF unknown.
If Ψθ is invertible, then (Ψθ)∗µ has PDF

x 7→ q(Ψ−1
θ (x))| det JΨ−1

θ (x)|

Chen et al. 2019



Invertible Neural Networks
Consider a neural network Ψ : X → X ,Ψ(x) = (fK ◦ ... ◦ f1)(x)
If fi are invertible, then so is Ψ and Ψ−1(x) = (f −1

1 ◦ ... ◦ f −1
K )(x)

What are invertible networks useful for?
I memory efficient backpropagation (computing derivatives):

can be implemented as O(1) rather than O(K )
I generative modeling: Usually learn Ψθ such that

x ∼ (Ψθ)∗µ with PDF of µ being q. Easy to sample from
(Ψθ)∗µ but PDF unknown.
If Ψθ is invertible, then (Ψθ)∗µ has PDF

x 7→ q(Ψ−1
θ (x))| det JΨ−1

θ (x)|

Chen et al. 2019



Invertible Neural Networks
Types of invertible layers:

1) Linear invertible layers: LU factorization Kondor et al. 2018,
pixel shuffle Dinh et al. 2014

2) Coupling layers Dinh et al. 2014, x = (x1, x2)

f (x1, x2) = (x1, gh(x1)(x2))

If ga is invertible for any a , so is f with inverse

f −1(x1, x2) = (x1, g
−1
h(x1)(x2))

Simplest example: ”additive coupling layer” γa(b) = b + a has
inverse γ−1

a (b) = b − a.
See Din et al. 2016 and Durkan et al. 2019 for more examples.

3) Residual layers: f (x) = x + g(x)
If g is Lipschitz with constant L < 1, then f is invertible.
Problem: f −1(x) is not easy to compute, e.g. use fixed point
iteration, and L < 1 hard to satisfy. See Behrmann et al. 2019 for
more details.

Important: inverse must be ”easy” to compute.



Invertible Neural Networks
Types of invertible layers:

1) Linear invertible layers: LU factorization Kondor et al. 2018,
pixel shuffle Dinh et al. 2014

2) Coupling layers Dinh et al. 2014, x = (x1, x2)

f (x1, x2) = (x1, gh(x1)(x2))

If ga is invertible for any a , so is f with inverse

f −1(x1, x2) = (x1, g
−1
h(x1)(x2))

Simplest example: ”additive coupling layer” γa(b) = b + a has
inverse γ−1

a (b) = b − a.
See Din et al. 2016 and Durkan et al. 2019 for more examples.

3) Residual layers: f (x) = x + g(x)
If g is Lipschitz with constant L < 1, then f is invertible.
Problem: f −1(x) is not easy to compute, e.g. use fixed point
iteration, and L < 1 hard to satisfy. See Behrmann et al. 2019 for
more details.

Important: inverse must be ”easy” to compute.



Invertible Neural Networks
Types of invertible layers:

1) Linear invertible layers: LU factorization Kondor et al. 2018,
pixel shuffle Dinh et al. 2014

2) Coupling layers Dinh et al. 2014, x = (x1, x2)

f (x1, x2) = (x1, gh(x1)(x2))

If ga is invertible for any a , so is f with inverse

f −1(x1, x2) = (x1, g
−1
h(x1)(x2))

Simplest example: ”additive coupling layer” γa(b) = b + a has
inverse γ−1

a (b) = b − a.
See Din et al. 2016 and Durkan et al. 2019 for more examples.

3) Residual layers: f (x) = x + g(x)
If g is Lipschitz with constant L < 1, then f is invertible.
Problem: f −1(x) is not easy to compute, e.g. use fixed point
iteration, and L < 1 hard to satisfy. See Behrmann et al. 2019 for
more details.

Important: inverse must be ”easy” to compute.



Invertible Neural Networks
Types of invertible layers:

1) Linear invertible layers: LU factorization Kondor et al. 2018,
pixel shuffle Dinh et al. 2014

2) Coupling layers Dinh et al. 2014, x = (x1, x2)

f (x1, x2) = (x1, gh(x1)(x2))

If ga is invertible for any a , so is f with inverse

f −1(x1, x2) = (x1, g
−1
h(x1)(x2))

Simplest example: ”additive coupling layer” γa(b) = b + a has
inverse γ−1

a (b) = b − a.
See Din et al. 2016 and Durkan et al. 2019 for more examples.

3) Residual layers: f (x) = x + g(x)
If g is Lipschitz with constant L < 1, then f is invertible.
Problem: f −1(x) is not easy to compute, e.g. use fixed point
iteration, and L < 1 hard to satisfy. See Behrmann et al. 2019 for
more details.

Important: inverse must be ”easy” to compute.



Equivariance and invariance

Sherry et al. 2021



Equivariance and invariance Cohen and Welling 2016, Cohen et al. 2019

Definition (Group equivariance and invariance)

Group G ”acts” on spaces X and Y . For any g ∈ G denote
”action” g on x ∈ X and y ∈ Y by TX

g and TY
g , respectively. We

call a function Ψ : X → Y G -equivariant if for all g ∈ G we have

Ψ ◦ TX
g = TY

g ◦Ψ

If Ψ is G -equivariant and G acts trivially on Y , then we call Ψ
G -invariant. I.e. for all x ∈ X and g ∈ G Ψ(TX

g x) = Ψ(x) .

Key property: If Ψ1 : X → Y and Ψ2 : Y → Z are G -equivariant
(with the same action on Y ), then Ψ2 ◦Ψ1 is G -equivariant, too!

Examples of interesting groups:
I translations
I rotations
I scaling

Application to inverse problems: Sherry et al. 2021 coming out soon!



Equivariance and invariance Cohen and Welling 2016, Cohen et al. 2019

Definition (Group equivariance and invariance)

Group G ”acts” on spaces X and Y . For any g ∈ G denote
”action” g on x ∈ X and y ∈ Y by TX

g and TY
g , respectively. We

call a function Ψ : X → Y G -equivariant if for all g ∈ G we have

Ψ ◦ TX
g = TY

g ◦Ψ

If Ψ is G -equivariant and G acts trivially on Y , then we call Ψ
G -invariant. I.e. for all x ∈ X and g ∈ G Ψ(TX

g x) = Ψ(x) .

Key property: If Ψ1 : X → Y and Ψ2 : Y → Z are G -equivariant
(with the same action on Y ), then Ψ2 ◦Ψ1 is G -equivariant, too!

Examples of interesting groups:
I translations
I rotations
I scaling

Application to inverse problems: Sherry et al. 2021 coming out soon!



Equivariance and invariance Cohen and Welling 2016, Cohen et al. 2019

Definition (Group equivariance and invariance)

Group G ”acts” on spaces X and Y . For any g ∈ G denote
”action” g on x ∈ X and y ∈ Y by TX

g and TY
g , respectively. We

call a function Ψ : X → Y G -equivariant if for all g ∈ G we have

Ψ ◦ TX
g = TY

g ◦Ψ

If Ψ is G -equivariant and G acts trivially on Y , then we call Ψ
G -invariant. I.e. for all x ∈ X and g ∈ G Ψ(TX

g x) = Ψ(x) .

Key property: If Ψ1 : X → Y and Ψ2 : Y → Z are G -equivariant
(with the same action on Y ), then Ψ2 ◦Ψ1 is G -equivariant, too!

Examples of interesting groups:
I translations
I rotations
I scaling

Application to inverse problems: Sherry et al. 2021 coming out soon!



Equivariance and invariance
Advantages of equivariance for neural networks:

I no need for data augmentation

I fewer parameters

I trains faster

I mathematical guarantees

I ...

Figure: Celledoni et al. 2020

Cohen and Welling 2016, Cohen et al. 2019, Worall et al. 2017 ...



Conclusions

I Connections of deep learning to ODEs, optimal control,
group theory ...

I New architectures with mathematical guarantees: stable,
invertible, equivariant ...

I Direct benefit for applictions: faster to train, less data, ...

Open problems
E. Celledoni et al., “Structure preserving deep learning,” arxiv:2006.03364, 2020.

I discretization

I manifolds

I sampling complexity

I ...


