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Outline

Towards deep learning with guarantees: stability, invertibility,
equivariance, invariance, existence of solutions
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1) Deep learning and differential
equations: Optimal control, stabil-
ity and deep limits

2) Structure preserving deep neu-
ral networks: Equivariance and In-
vertibility
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Classification with Deep Learning

Figure courtesy of L. Ruthotto.

» labeled training data (Xi, yk)k=1,..K
» transform data with hidden layers
» perform linear classification

» generalization to unseen data



Deep Learning / Deep Neural Networks (DNN)

hidden layer 1 hidden layer 2

input layer. given data, features, e.g. image of dog
hidden layers: transform data

output layer classification result, e.g. label “dog"”
invented in the 50's

recent success by massive data and computing power

applications: image classification, face recognition, self-driving
cars, ...
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Mathematical Formulation of Deep Learning

at layer

input layer
hidden layer 1 hidden layer 2

» input layer. x° € R"
» hidden layers {xk}kzlw_,K, K depth/number of layers of
DNN, forward propagation

xktl — a(Aka + bk)

activation function: o : R — R applied component-wise, e.g.
o(x) = tanh(x), ReLU: o(x) = max(x, 0)




Mathematical Formulation of Deep Learning

input layer

hidden layer 1  hidden layer 2

» output layer y € S"1, classification result, e.g. m = 2,

y = [1,0] may correspond to “dog”

y = 1(WxX +w)

7:R"” — R™, e.g. soft-max:

(%) = exp(x;)

a Zj exp(x;)

.’L‘T

soft-max(zT)

2 .

3




Supervised Learning with Deep Neural Networks

Figure courtesy of L. Ruthotto.

The Learning Problem

Given training data (Xn, Yn)n=1...n find A= {A"}1  k,
b= {b}y—1. k., W, w that solve

N

. K B )
A7r1;rj\l/\r},wnz_: IT(Wx;, + w) — yall© + R(A, b, W,w)

st. xkt =g(AxE 4+ b5), X0 =x,

» Quality of learning measured by generalization



Word of warning

Deep learning is great, but ...
> need a lot of data

“panda”

Iliil

“vulture”

» difficult to train
» can be fooled
| 2

Deep learning needs ...
» mathematical guarantees
» explainable models =
> B

“not hotdog”

https://ai.googleblog.com/2018/09/

introducing-unrestricted-adversarial.html

Adversarial Noise

Adversarial Rotation

Adversarial Photographer

+r"":

“orangutan”



https://ai.googleblog.com/2018/09/introducing-unrestricted-adversarial.html
https://ai.googleblog.com/2018/09/introducing-unrestricted-adversarial.html

Deep Learning meets Optimal Control



Deep Residual Neural Networks (ResNet)
» “Standard” Neural Networks

xktl — O’(Aka + bk)

» Deep Residual Neural Networks )
(ResNet) He, Zhang, Ren, Sun 2015 % - X
(> 68000 citations on GoogleScholar) identity
F(x)+x @

XKL = xk 4 At o(ARXK 4 bK)

Linking ResNet with ODEs

ResNet is Forward Euler discretization x(t) ~ w of

x(t) = o(A(t)x(t) + b(t)), te[0,T]

with continuous-time mappings A, b. x* := x(kAt) ...

Haber and Ruthotto 2018, Li et al. 2018, Benning et al. 2019, ...



Optimal Control meets for Deep Learning

The Optimal Control Learning Problem

Given training data (Xn, yn)n=1,..n find A: [0, T| — RS
b: [0, T] - RM, W, w that solve



Potential advantages from Optimal Control / ODEs

level 1,12 x 12 level 2,24 x 24 level 3,48 x 48 level 4, 96 x 96

Rich theory (see stability in a bit)
New architectures

>

>

> New models, e.g. parametrization, regularization

» Advanced algorithms, e.g. Multi-resolution Learning
>



Utilize ODE knowledge



Stability and Generalization

» x; similar to xz, then x1(T) should be similar to xx(T).
Otherwise instability to small errors prevents generalization.

» Examples. o(y)=y,b=0
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Haber and Ruthotto 2018



Stability and Generalization

Theorem (very old)

The autonomous ODE x = f(x) is stable if the real parts of the
eigenvalues of the Jacobian Df are non-positive.

Corollary
Let 6 > 0. Then forward propagation is stable if Re(A(A)) < 0.

» Examples. o(y)=y,b=0
MAL) =(2,2), MA-)=(-2,-2), A(Ao) = (i,—1)
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NNRRNNANAAA 77 777 77 ey
SRRRRRRANA A 8 M A0 A
RENNCARRAA A B 772 222 SSSSSSASSSSSSSSSNNAAA T LY
SRARSRARAA A T 77 22 SNSSSNASSSNNANSNAANA UL,
RERNNERRRR A A 1 7 2 2y 2SN A e oo v
RRRRARKAR R & 1 5 5 s 2NN A e e v

RRRARRRA A 1 1 g 2NN SASNSNSSNNSANISA AL LA
NRNNSRRRA & 1 1 5 oSN NSSSSSSSSSSSI VL L v e
R N RN IR
0 NNNRRRR AR 0 :
NARRRRAR R ooy Saaabre
SRR LSSV I AN AR RN
S DA S S S LCNXXRNNNNNANY,
NSy AR A o S ACACAL LA I 0 0
N Seces S L4 VN VANINGNNN 77777 1A RRRRAR RNV
RO N 77771 T AR TR AR
s D] 777 T TARNARRARARRARARARARARS
v 7T AARRRARANRERNIVGRR
IED St AR AR
15 ML 150 —15
=15 0 15 =15 0 15 =15 0 15

Haber and Ruthotto 2018



New Unconditionally Stable Architectures

1.5¢

P> ResNet with antisymmetric
transformation matrix

X:a((A—AT)x+b>

> Hamiltonian inspired Network: 01F
ResNet with auxiliary variable
and antisymmetric matrix

()= (G 9) () )

x(0) =x9, z(0)=0 —0.1 0 0.1
Haber and Ruthotto 2018




New Unconditionally Stable Architectures

1577

P> ResNet with antisymmetric
transformation matrix

X:a((A—AT)x+b>

> Hamiltonian inspired Network: 01F
ResNet with auxiliary variable
and antisymmetric matrix

()= (G ) () +2)

x(0) = x0, 2(0)=0 '1—0.1 0 0.1
Haber and Ruthotto 2018
Problem: this statement is only true for autonomous systems!
If the vector-field f depends on time, then similar statements are
true but the theory is rather weak.




Revisiting Stability

Consider ®y(u) = u(T) with u solving 4u(t) = f(t, u(t)),t € [0, T]

What is a useful definition of stability for neural networks?

Definition (Stability 1: Lipschitz)
There exists C > 0 such that for all u, v we have
[®g(u) — (V)] < Cllu—v| (Lip)

Definition (Stability 2: Non-expansive)
For all u, v (Lip) holds with C = 1.




When is &4 stable?
Recall ®¢(u) = u(T) with u solving u(t) = f(t, u(t)),t € [0, T]

> Arguments based on Lipschitz continuity of f
> If f(t,-) being L-Lipschitz, e.g. f(t,u) = o(A(t)u+ b(t)) with
o being S-Lipschitz and A continuous, then Def 1 holds with

C=exp(T-L) (=exp(T-Smax[|A(t)])).

Celledoni et al. 2020, Zhang and Schaeffer 2020
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When is &4 stable?
Recall ®¢(u) = u(T) with u solving u(t) = f(t, u(t)),t € [0, T]

> Arguments based on Lipschitz continuity of f
> If f(t,-) being L-Lipschitz, e.g. f(t,u) = o(A(t)u+ b(t)) with
o being S-Lipschitz and A continuous, then Def 1 holds with

C=exp(T-L) (=exp(T-Smax[|A(t)])).

Can't satisfy Def 2 since C > 1 for all non-trivial cases.
» Arguments based on ”one-sided” Lipschitz continuity of f

(F(t,u1) — f(t,u2), u1 — o) < vljuy — uo?
» If f is L-Lipschitz, then f is "one-sided” Lipschitz with v = L
(F(t,u) = £t u2), 1 — u2) < [[F(t, u1) — £t u2)|[[|un — w2
< Ll — w?

» Then Wy is Lipschitz with C = exp(T - v).
Catch: v can be non-positive, ¥ < 0. Thus may satisfy Def 2

Celledoni et al. 2020, Zhang and Schaeffer 2020



Sufficient Conditions for Stability
Recall, ®g(u) = u(T) with u solving u(t) = f(t, u(t)),t € [0, T]
"one-sided” Lipschitz continuity of f

<f(t, Ul) — f(t, U2), u — U2> < l/||U1 — U2H2 (1)

» Let Vi(u) be twice differentiable and convex. Then
f(t,u) = =V Vi(u) satisfies the one-sided Lipschitz condition
for some v < 0.

» Let 0 < o' <1 almost everywhere. Then

f(t,u) =—A"(t)o(A(t)u + b(t))

satisfies the one-sided Lipschitz condition with —;2 < v < 0
where p, := inf; pu(t) and u(t) is the smallest singular value
of A(t).

Celledoni et al. 2020, Zhang and Schaeffer 2020



Examples:

Forward propagation with ResNet

donut3d

k=0

videos?
Celledoni et al. 2020



Examples: Different Runge-Kutta methods

0 0
1 ! —
1

6
TaBLE 1. Four explicit Runge-Kutta methods: ResNet/Euler, Im-
proved Euler, Kutta(3) and Kutta(4).
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ResNet /Euler Improved Euler Kutta(3) Kutta(4)

prediction

transformation

Benning et al. 2019



Examples: Learn time steps

xkH1 = xk 4 Atko(Akxk + bK)
ODENet: Estimate (Atk, Ak bK)
Simplex constraint: Atk > 0,> 4 Atk =T

Net ResNet ODENet ODENet+Simplex

prediction

transformation

Benning et al. 2019



Examples: Learn time steps
xK+1 = xk 4+ Atko(Akxk + bk)
ODENet: Estimate (Atk, Ak bK)
Simplex constraint: Atk >0,5, Atk =T

Al
B
>
atll
(/‘”~

A
) d
—
—*—ResNet —o—ResNet
ODENet 05! ODENet
05 —+— ODENet+Simplex —+—ODENet+Simplex
5 10 15 20 5 10 15 20
time step / layer time step / layer
' 1
05
: { f | 0.5 A
30 3 ./\/
-05 = ResNet 08 —o—ResNet
ODENet ODENet
~o~ ODENet+Simplex . ——ODENets Simplex
5 10 15 20 5
time step / layer

10 15 20
time step / layer
Benning et al. 2019



Deep Limits: Number of Layers K — 00 Thorpe and van Gennip 2018
Interpret discrete parameters as piecewise constant functions on [0, T]

Discrete Learning Problem

Find 6K := (Ak,bk)k:L_._,K which minimize EX : L2(,uK) — R,
EX(0) = Y5y XK = yall® + R(6) such that

T
xk+l = xk 4 Ra(Akx,’; + b5, x%=x,

Continuous Learning Problem
Find 6 := (A: [0, T] — RM*M b . [0, T] — RM) which minimize
E®:H' 5 R, E(0) = K, 1%(T) = yall> + R(0) such that

Xn = 0(Axa + b), x,(0) = x,



Deep Limits: Number of Layers K — 00 Thorpe and van Gennip 2018

Interpret discrete parameters as piecewise constant functions on [0, T]

Discrete Learning Problem

Find 6K := (Ak,bk)k:L_._,K which minimize EX : Lz(pK) — R,
EX(0) = Y5y XK = yall® + R(6) such that

X,’,‘+1 = x,l,‘ + RO’(AkX,I,( + bk), x,(,) = Xp

Continuous Learning Problem
Find 6 := (A: [0, T] — RM*M b . [0, T] — RM) which minimize
E®:H' 5 R, E(0) = K, 1%(T) = yall> + R(0) such that

Xn = 0(Axa + b), x,(0) = x,

Theorem

RKX. R suitable regularization and o Lipschitz with o(0) = 0.
Then 1) minimizers exist, 2) minimal values converge and 3)
{6%} ken C L2 compact and any limit point is a minimizer of E.



Enforcing Structure in Neural Networks



Invertible Neural Networks

Consider a neural network W : X — X, W(x) = (fx o ...
If ; are invertible, then so is W and W~!(x) = (f; to...0



Invertible Neural Networks

Consider a neural network W : X — X, W(x) = (fx o ... o f1)(x)
If ; are invertible, then so is W and W~!(x) = (f; to...0 f,;l)(x)

What are invertible networks useful for?
» memory efficient backpropagation (computing derivatives):
can be implemented as O(1) rather than O(K)



Invertible Neural Networks
Consider a neural network W : X — X, W(x) = (fx o ... o f1)(x)
If f; are invertible, then so is W and W~ (x) = (f; 1 o...0 f,1)(x)

What are invertible networks useful for?
» memory efficient backpropagation (computing derivatives):
can be implemented as O(1) rather than O(K)
» generative modeling: Usually learn Wy such that
x ~ (Wg).p with PDF of 1 being q. Easy to sample from
(Wg).pt but PDF unknown.
If Wy is invertible, then (Vy).u has PDF

x = q(Vg ' (x))] det JWy (x)]

Chen et al. 2019
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Types of invertible layers:

1) Linear invertible layers: LU factorization Kondor et al. 2018,
pixel shuffle Dinh et al. 2014



Invertible Neural Networks
Types of invertible layers:
1) Linear invertible layers: LU factorization Kondor et al. 2018,
pixel shuffle Dinh et al. 2014
2) Coupling layers Dinh et al. 2014, x = (x1, x2)
f(xi,x2) = (legh(xl)(XZ))
If g, is invertible for any a , so is f with inverse
fHx1, %) = (X1,g;:()1<1)(x2))

Simplest example: "additive coupling layer” ~,(b) = b+ a has
inverse v; 1(b) = b — a.
See Din et al. 2016 and Durkan et al. 2019 for more examples.
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Coupling layers Dinh et al. 2014, x = (x1, X2)

f(x1,x) = (Xl,gh(xl)(x2))

If g, is invertible for any a , so is f with inverse
fHx1, %) = (X1,g;:()1<1)(x2))

Simplest example: "additive coupling layer” ~,(b) = b+ a has
inverse v; 1(b) = b — a.

See Din et al. 2016 and Durkan et al. 2019 for more examples.
Residual layers: f(x) = x + g(x)

If g is Lipschitz with constant L < 1, then f is invertible.
Problem: f~1(x) is not easy to compute, e.g. use fixed point
iteration, and L < 1 hard to satisfy. See Behrmann et al. 2019 for
more details.



Invertible Neural Networks
Types of invertible layers:

1)

2)

Linear invertible layers: LU factorization Kondor et al. 2018,
pixel shuffle Dinh et al. 2014
Coupling layers Dinh et al. 2014, x = (x1, X2)

f(x1,x) = (Xl,gh(xl)(x2))

If g, is invertible for any a , so is f with inverse
fHx1, %) = (X1,g;:()1<1)(x2))

Simplest example: "additive coupling layer” ~,(b) = b+ a has
inverse v; 1(b) = b — a.

See Din et al. 2016 and Durkan et al. 2019 for more examples.
Residual layers: f(x) = x + g(x)

If g is Lipschitz with constant L < 1, then f is invertible.
Problem: f~1(x) is not easy to compute, e.g. use fixed point
iteration, and L < 1 hard to satisfy. See Behrmann et al. 2019 for
more details.

Important: inverse must be "easy” to compute.



Equivariance and invariance

Adversarial Rotation

~
+ =
C

“vulture” “orangutan”

Noisy Ordinary
Horizontal training example

Equivariant

Noisy Ordinary Equivariant
Vertical testing example Sherry et al. 2021



Equivariance and invariance cohen and Welling 2016, Cohen et al. 2019

Definition (Group equivariance and invariance)

Group G "acts” on spaces X and Y. For any g € G denote
"action” gon x € X and y € Y by T;( and Tgy, respectively. We
call a function W : X — Y G-equivariant if for all g € G we have

X _ Y
\UOTg—Tg oW

If U is G-equivariant and G acts trivially on Y, then we call ¥
G-invariant. le. forall x € X and g € G W(T}x) = V(x).
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Equivariance and invariance cohen and Welling 2016, Cohen et al. 2019

Definition (Group equivariance and invariance)

Group G "acts” on spaces X and Y. For any g € G denote
"action” gon x € X and y € Y by Tg and Tgy, respectively. We
call a function W : X — Y G-equivariant if for all g € G we have

X _ Y
\UOTg—Tg oW

If U is G-equivariant and G acts trivially on Y, then we call ¥
G-invariant. le. forall x € X and g € G W(T}x) = V(x).

Key property: If W; : X — Y and V5 : Y — Z are G-equivariant
(with the same action on Y'), then W, o Wy is G-equivariant, too!

Examples of interesting groups:
P translations
P rotations
» scaling

Application to inverse problems: Sherry et al. 2021 coming out soon!



Equivariance and invariance
Advantages of equivariance for neural networks:

| 2

>
>
>
>

Training Error

no need for data augmentation
fewer parameters

trains faster

mathematical guarantees

100 ¢

Equivariant
—— Ordinary

Clean Noisy Equivariant

On-grid example

Ordinary

—4 !
10 500 1,000 1,500

Noisy Ordinary Equivariant
Iteration number Rotated example

Figure: Celledoni et al. 2020
Cohen and Welling 2016, Cohen et al. 2019, Worall et al. 2017 ...



Conclusions

> of deep learning to ODEs, optimal control,
group theory ...

» New architectures with mathematical guarantees: stable,
invertible, equivariant ...

» Direct benefit for applictions: faster to train, less data, ...

Open problems
E. Celledoni et al., “Structure preserving deep learning,” arxiv:2006.03364, 2020.

» discretization
» manifolds

>

> ...



