Bilevel Learning for Inverse Problems

Matthias J. Ehrhardt

Institute for Mathematical Innovation, University of Bath, UK

February 12, 2021

Joint work with:

F. Sherry, M. Graves, G. Maierhofer, G. Williams, C.-B. Schönlieb (all Cambridge, UK), M. Benning (Queen Mary, UK), J.C. De los Reyes (EPN, Ecuador)

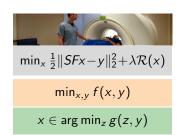
L. Roberts (ANU, Australia)

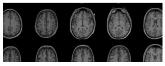
Outline

1) Motivation

2) Bilevel Learning

- **3)** Learn sampling pattern in MRI F. Sherry et al., "Learning the Sampling Pattern for MRI," IEEE TMI 2020.
- **4)** Inexact algorithms for bilevel learning M. J. Ehrhardt and L. Roberts, "Inexact Derivative-Free Optimization for Bilevel Learning," Accept. by JMIV 2020.







Inverse problems

$$Ax = y$$

x : desired solutiony : observed data

A: mathematical model

Goal: recover X given V

Hadamard (1902): We call an inverse problem

Ax = y well-posed if

- (1) a solution x^* exists
- (2) the solution **x*** is **unique**
- (3) x^* depends **continuously** on data y.

Otherwise, it is called **ill-posed**.

Jacques Hadamard

Most interesting problems are **ill-posed**.

How to solve inverse problems?

Variational regularization (\sim 1990)

Approximate a solution x^* of Ax = y via

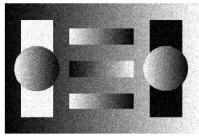
$$\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \left\{ \mathcal{D}(A\mathbf{x}, \mathbf{y}) + \lambda \mathcal{R}(\mathbf{x}) \right\}$$

- R regularizer: penalizes unwanted features, ensures stability and uniqueness
- λ regularization parameter: $\lambda \geq 0$. If $\lambda = 0$, then an original solution is recovered. If $\lambda \to \infty$, more and more weight is given to the regularizer \mathcal{R} .

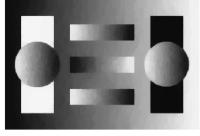
textbooks: Scherzer et al. 2008, Ito and Jin 2015, Benning and Burger 2018

- ► Tikhonov regularization (~1960): $\mathbb{R}(x) = \frac{1}{2} ||x||_2^2$
- H^1 (~1960-1990?) $\mathcal{R}(x) = \frac{1}{2} \|\nabla x\|_2^2$

- ► Tikhonov regularization (~1960): $\mathbb{R}(x) = \frac{1}{2} ||x||_2^2$
- $ightharpoonup H^1 (\sim 1960-1990?) \ \mathcal{R}(x) = \frac{1}{2} \|\nabla x\|_2^2$
- ▶ Total Variation $\mathcal{R}(x) = \|\nabla x\|_1$ Rudin, Osher, Fatemi 1992

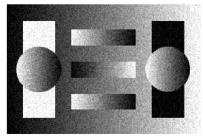


Noisy image



TV denoised image

- ► Tikhonov regularization (~1960): $\mathbb{R}(x) = \frac{1}{2} ||x||_2^2$
- $\vdash H^1 (\sim 1960-1990?) \mathcal{R}(x) = \frac{1}{2} ||\nabla x||_2^2$
- ▶ Total Variation $\mathcal{R}(x) = \|\nabla x\|_1$ Rudin, Osher, Fatemi 1992
- ▶ "Higher Order" Total Variation $\Re(x) = \|\nabla^2 x\|_1$?

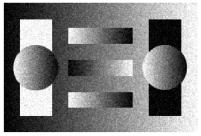


Noisy image

TV² denoised image

- ► Tikhonov regularization (~1960): $\mathbb{R}(x) = \frac{1}{2} ||x||_2^2$
- $ightharpoonup H^1$ (~1960-1990?) $m \mathcal{R}(x) = \frac{1}{2} \|\nabla x\|_2^2$
- ▶ Total Variation $\mathcal{R}(x) = \|\nabla x\|_1$ Rudin, Osher, Fatemi 1992
- ▶ "Higher Order" Total Variation $\Re(x) = \|\nabla^2 x\|_1$?
- Total Generalized Variation

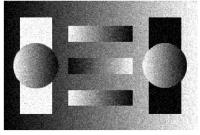
$$\mathcal{R}(x) = \inf_{v} \|\nabla x - v\|_1 + \beta \|\nabla v\|_1$$
 Bredies, Kunisch, Pock 2010



TGV² denoised image

- ► Tikhonov regularization (~1960): $\mathbb{R}(x) = \frac{1}{2} ||x||_2^2$
- $ightharpoonup H^1$ (~1960-1990?) $m \mathcal{R}(x) = \frac{1}{2} \|\nabla x\|_2^2$
- ▶ Total Variation $\mathcal{R}(x) = \|\nabla x\|_1$ Rudin, Osher, Fatemi 1992
- ▶ "Higher Order" Total Variation $\mathcal{R}(x) = \|\nabla^2 x\|_1$?
- ► Total Generalized Variation

$$\mathcal{R}(x) = \inf_{v} \|\nabla x - v\|_1 + \beta \|\nabla v\|_1$$
 Bredies, Kunisch, Pock 2010

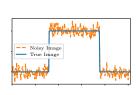


Noisy image

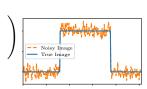
TGV² denoised image

How to choose the regularization?

$$\min_{x} \frac{1}{2} ||Ax - y||_{2}^{2} + \alpha \left(\underbrace{\sum_{j} ||(\nabla x)_{j}||_{2}}_{=\text{TV}(x)} \right)$$



$$\min_{x} \frac{1}{2} ||Ax - y||_{2}^{2} + \alpha \left(\underbrace{\sum_{j} \sqrt{||(\nabla x)_{j}||_{2}^{2} + \nu^{2}}}_{\approx \text{TV}(x)} \right)$$



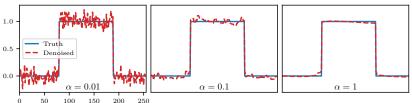
$$\min_{x} \frac{1}{2} \|Ax - y\|_{2}^{2} + \alpha \left(\underbrace{\sum_{j} \sqrt{\|(\nabla x)_{j}\|_{2}^{2} + \nu^{2}}}_{\approx \text{TV}(x)} + \frac{\xi}{2} \|x\|_{2}^{2} \right) \underbrace{\sum_{j \text{ Noisy Image} \atop \text{True Image}}}_{\approx \text{TV}(x)}$$

- Smooth and strongly convex
- lacktriangle Solution depends on choices of lpha, u and ξ

$$\min_{x} \frac{1}{2} \|Ax - y\|_{2}^{2} + \alpha \left(\underbrace{\sum_{j} \sqrt{\|(\nabla x)_{j}\|_{2}^{2} + \nu^{2}}}_{\approx \text{TV}(x)} + \underbrace{\frac{\xi}{2} \|x\|_{2}^{2}}_{\parallel x \parallel_{2}} \right) \underbrace{\sum_{j} \underbrace{\sum_{j} \sqrt{\|(\nabla x)_{j}\|_{2}^{2} + \nu^{2}}}_{\parallel x \parallel_{2}} + \underbrace{\frac{\xi}{2} \|x\|_{2}^{2}}_{\parallel x \parallel_{2}} \underbrace{\sum_{j} \sqrt{\|(\nabla x)_{j}\|_{2}^{2} + \nu^{2}}}_{\approx \text{TV}(x)} + \underbrace{\frac{\xi}{2} \|x\|_{2}^{2}}_{\parallel x \parallel_{2}} \underbrace{\sum_{j} \sqrt{\|(\nabla x)_{j}\|_{2}^{2} + \nu^{2}}}_{\parallel x \parallel_{2}} + \underbrace{\frac{\xi}{2} \|x\|_{2}^{2}}_{\parallel x \parallel_{2}} \underbrace{\sum_{j} \sqrt{\|(\nabla x)_{j}\|_{2}^{2} + \nu^{2}}}_{\approx \text{TV}(x)} + \underbrace{\frac{\xi}{2} \|x\|_{2}^{2}}_{\parallel x \parallel_{2}} \underbrace{\sum_{j} \sqrt{\|(\nabla x)_{j}\|_{2}^{2} + \nu^{2}}}_{\parallel x \parallel_{2}} + \underbrace{\frac{\xi}{2} \|x\|_{2}^{2}}_{\parallel x \parallel_{2}} \underbrace{\sum_{j} \sqrt{\|(\nabla x)_{j}\|_{2}^{2} + \nu^{2}}}_{\approx \text{TV}(x)} + \underbrace{\frac{\xi}{2} \|x\|_{2}^{2}}_{\parallel x \parallel_{2}} \underbrace{\sum_{j} \sqrt{\|(\nabla x)_{j}\|_{2}^{2} + \nu^{2}}}_{\parallel x \parallel_{2}} + \underbrace{\frac{\xi}{2} \|x\|_{2}^{2}}_{\parallel x \parallel_{2}} \underbrace{\sum_{j} \sqrt{\|(\nabla x)_{j}\|_{2}^{2} + \nu^{2}}}_{\parallel x \parallel_{2}} + \underbrace{\frac{\xi}{2} \|x\|_{2}^{2}}_{\parallel x \parallel_{2}} \underbrace{\sum_{j} \sqrt{\|(\nabla x)_{j}\|_{2}^{2} + \nu^{2}}}_{\parallel x \parallel_{2}} + \underbrace{\frac{\xi}{2} \|x\|_{2}^{2}}_{\parallel x \parallel_{2}} \underbrace{\sum_{j} \sqrt{\|(\nabla x)_{j}\|_{2}^{2} + \nu^{2}}}_{\parallel x \parallel_{2}} + \underbrace{\frac{\xi}{2} \|x\|_{2}^{2}}_{\parallel x \parallel_{2}} \underbrace{\sum_{j} \sqrt{\|(\nabla x)_{j}\|_{2}^{2} + \nu^{2}}}_{\parallel x \parallel_{2}} + \underbrace{\frac{\xi}{2} \|x\|_{2}^{2}}_{\parallel x \parallel_{2}} \underbrace{\sum_{j} \sqrt{\|(\nabla x)_{j}\|_{2}^{2} + \nu^{2}}}_{\parallel x \parallel_{2}} + \underbrace{\frac{\xi}{2} \|x\|_{2}^{2}}_{\parallel x \parallel_{2}} + \underbrace{\frac{\xi}{2} \|x\|_{2}^$$

- Smooth and strongly convex
- ▶ Solution depends on choices of α , ν and ξ

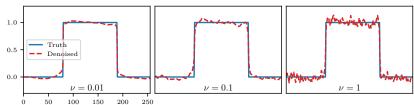
Vary
$$\alpha$$
 ($\nu = 10^{-3}$, $\xi = 10^{-3}$)



$$\min_{x} \frac{1}{2} \|Ax - y\|_{2}^{2} + \alpha \left(\underbrace{\sum_{j} \sqrt{\|(\nabla x)_{j}\|_{2}^{2} + \nu^{2}}}_{\approx \text{TV}(x)} + \underbrace{\frac{\xi}{2} \|x\|_{2}^{2}}_{\approx \text{TV}(x)} \right) \underbrace{\sum_{j} \frac{\|\nabla y\|_{2}^{2} + \nu^{2}}{\|\nabla y\|_{2}^{2} + \nu^{2}}}_{\approx \text{TV}(x)} + \underbrace{\frac{\xi}{2} \|x\|_{2}^{2}}_{\approx \text{TV}(x)}$$

- Smooth and strongly convex
- ▶ Solution depends on choices of α , ν and ξ

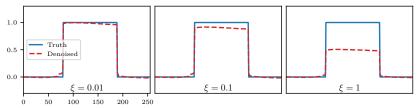
Vary
$$\nu$$
 ($\alpha = 1$, $\xi = 10^{-3}$)



$$\min_{x} \frac{1}{2} \|Ax - y\|_{2}^{2} + \alpha \left(\underbrace{\sum_{j} \sqrt{\|(\nabla x)_{j}\|_{2}^{2} + \nu^{2}}}_{\approx \text{TV}(x)} + \underbrace{\frac{\xi}{2} \|x\|_{2}^{2}}_{\approx \text{Tv}(x)} \right) \underbrace{\sum_{j} \underbrace{\sqrt{\|(\nabla x)_{j}\|_{2}^{2} + \nu^{2}}}_{\approx \text{Tv}(x)} + \underbrace{\frac{\xi}{2} \|x\|_{2}^{2}}_{\approx \text{Tv}(x)}$$

- Smooth and strongly convex
- ▶ Solution depends on choices of α , ν and ξ

Vary
$$\xi$$
 ($\alpha = 1$, $\nu = 10^{-3}$)



$$\min_{x} \frac{1}{2} \|Ax - y\|_{2}^{2} + \alpha \left(\underbrace{\sum_{j} \sqrt{\|(\nabla x)_{j}\|_{2}^{2} + \nu^{2}}}_{\approx \text{TV}(x)} + \underbrace{\frac{\xi}{2} \|x\|_{2}^{2}}_{\approx \text{TV}(x)} \right) \underbrace{\sum_{j} \frac{\|\nabla y\|_{2}^{2} + \nu^{2}}{\|\nabla y\|_{2}^{2} + \nu^{2}}}_{\approx \text{TV}(x)} + \underbrace{\frac{\xi}{2} \|x\|_{2}^{2}}_{\approx \text{TV}(x)}$$

- Smooth and strongly convex
- ▶ Solution depends on choices of α , ν and ξ

Vary
$$\xi$$
 ($\alpha=1,\ \nu=10^{-3}$)

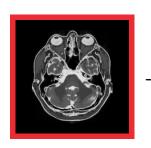
How to choose all these parameters?

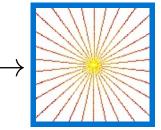
Example: Magnetic Resonance Imaging (MRI)

Continuous model: Fourier transform

$$A_{\mathbf{X}}(s) = \int_{\mathbb{R}^2} \mathbf{x}(s) \exp(-ist) dt$$

Dicrete model: $A = SF \in \mathbb{C}^{n \times N}$





Solution **not unique**.

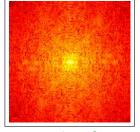
Compressed Sensing MRI:

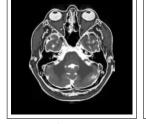
 $A = S \circ F$ Lustig, Donoho, Pauly 2007

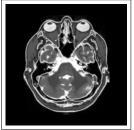
Fourier transform F, sampling $Sw = (w_i)_{i \in \Omega}$

$$\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \left\{ \frac{1}{2} \|SF\mathbf{x} - \mathbf{y}\|_{2}^{2} + \lambda \|\nabla\mathbf{x}\|_{1} \right\}$$

Miki Lustig







sampling S^*y

 $\lambda = 0$

 $\lambda = 1$

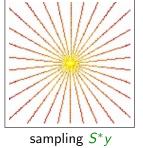
Compressed Sensing MRI:

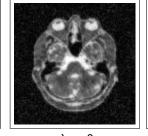
 $A = S \circ F$ Lustig, Donoho, Pauly 2007

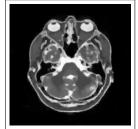
Fourier transform F, sampling $Sw = (w_i)_{i \in \Omega}$

$$\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \left\{ \frac{1}{2} \|SF\mathbf{x} - \mathbf{y}\|_{2}^{2} + \lambda \|\nabla\mathbf{x}\|_{1} \right\}$$

Miki Lustig







$$\lambda = 0$$
 $\lambda = 10^{-4}$

Compressed Sensing MRI:

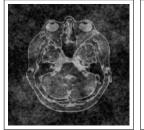
 $A = S \circ F$ Lustig, Donoho, Pauly 2007

Fourier transform F, sampling $Sw = (w_i)_{i \in \Omega}$

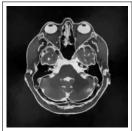
$$\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \left\{ \frac{1}{2} \|SF\mathbf{x} - \mathbf{y}\|_{2}^{2} + \lambda \|\nabla\mathbf{x}\|_{1} \right\}$$

Miki Lustig

sampling S^*y



 $\lambda = 0$



$$\lambda = 10^{-4}$$

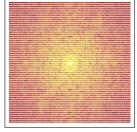
Compressed Sensing MRI:

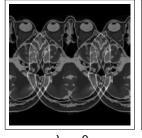
 $A = S \circ F$ Lustig, Donoho, Pauly 2007

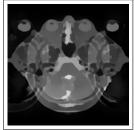
Fourier transform F, sampling $Sw = (w_i)_{i \in \Omega}$

$$\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \left\{ \frac{1}{2} \|SF\mathbf{x} - \mathbf{y}\|_{2}^{2} + \lambda \|\nabla\mathbf{x}\|_{1} \right\}$$

Miki Lustig







sampling S^*y

 $\lambda = 0$

 $\lambda = 10^{-3}$

How to choose the sampling S? Is there an optimal sampling?

Does a good sampling depend on \mathcal{R} and λ ?

Bilevel Learning

Bilevel learning for inverse problems

$$\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \left\{ \mathcal{D}(A\mathbf{x}, \mathbf{y}) + \frac{\lambda}{\lambda} \mathcal{R}(\mathbf{x}) \right\}$$

Bilevel learning for inverse problems

Upper level (learning):

Given $(x^{\dagger}, y), y = Ax^{\dagger} + \varepsilon$, solve

$$\min_{\substack{\lambda \geq 0, \hat{x}}} \|\hat{x} - x^{\dagger}\|_2^2$$

Lower level (solve inverse problem):

$$\hat{x} \in \arg\min_{x} \left\{ \mathcal{D}(Ax, y) + \frac{\lambda}{\lambda} \mathcal{R}(x) \right\}$$

Carola Schönlieb

von Stackelberg 1934, Kunisch and Pock 2013, De los Reyes and Schönlieb 2013

Bilevel learning for inverse problems

Upper level (learning):

Given $(x_i^{\dagger}, y_i)_{i=1}^n, y_i = Ax_i^{\dagger} + \varepsilon_i$, solve

$$\min_{\lambda \ge 0, \hat{x}_i} \frac{1}{n} \sum_{i=1}^n \|\hat{x}_i - x_i^{\dagger}\|_2^2$$

Lower level (solve inverse problem):

$$\hat{x}_i \in \arg\min_{x} \left\{ \mathcal{D}(Ax, y_i) + \frac{\lambda}{\lambda} \mathcal{R}(x) \right\}$$

Carola Schönlieb

Denoising: Learning two TGV parameters.

$$\mathcal{R}(x) = \inf_{v} \|\nabla x - v\|_1 + \frac{\beta}{\beta} \|\nabla v\|_1$$

(a) Too low β / High oscillation

(b) Optimal β

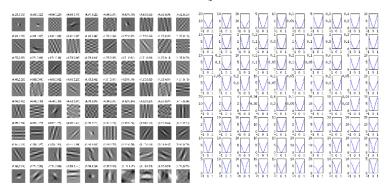
(c) Too high β / almost TV

De los Reyes, Schönlieb, Valkonen 2017

Denoising: fields of experts regularisation

Learning filters K_k and potential functions ρ_k for fields of experts regularisation

$$\mathcal{R}(x) = \sum_{k=1}^{M} \sum_{i,j} \rho_{k}((K_{k}x)_{i,j})$$



Chen, Ranftl, Pock 2014

Some important works on sampling for MRI

Uninformed

- Cartesian, radial, variable density ... e.g. Lustig et al. 2007
 - ✓ simple to implement
 - not tailored to application or reconstruction method
- ► compressed sensing: random sampling e.g. Candes and Romberg 2007
 - ✓ mathematical guarantees
 - limited to sparse signals and sparsity promoting regularizers

Some important works on sampling for MRI

Uninformed

- ► Cartesian, radial, variable density ... e.g. Lustig et al. 2007
 - ✓ simple to implement
 - not tailored to application or reconstruction method
- compressed sensing: random sampling e.g. Candes and Romberg 2007
 mathematical guarantees
 - | limited to sparse signals and sparsity promoting regularizers

Learned

- ► Largest Fourier coefficients of training set Knoll et al. 2011
 - simple to implement, computationally light
 - not tailored to reconstruction method
- ▶ **greedy**: iteratively select "best" sample e.g. Gözcü et al. 2018
 - ✓ adaptive to dataset, reconstruction method
 - only discrete values; computationally heavy
- ▶ Deep learning: e.g. specify sampling as continuous parameters in network Wang et al. 2021
 - ✓ realistic and easy to implement sampling patterns
 - ✓ end-to-end
 - X limited to neural network reconstruction

Lower level (MRI reconstruction):

$$R(\lambda, s, y) = \arg\min_{x} \left\{ \frac{1}{2} ||S(Fx - y)||_{2}^{2} + \lambda \mathcal{R}(x) \right\}$$

$$S = \operatorname{diag}(s), \quad s_i \in \{0, 1\}$$

Upper level (learning):

Given **training data** $(x_i^{\dagger}, y_i)_{i=1}^n$, solve

$$\min_{\lambda \geq 0, s \in \{0,1\}^m} \frac{1}{n} \sum_{i=1}^n \|R(\lambda, s, y_i) - x_i^{\dagger}\|_2^2$$

Lower level (MRI reconstruction):

$$R(\lambda, s, y) = \arg\min_{x} \left\{ \frac{1}{2} || S(Fx - y)||_{2}^{2} + \lambda R(x) \right\}$$

$$S = \operatorname{diag}(s), \quad s_i \in \{0, 1\}$$

Upper level (learning):

Given training data $(x_i^{\dagger}, y_i)_{i=1}^n$, solve

$$\min_{\lambda \geq 0, s \in [0,1]^m} \frac{1}{n} \sum_{i=1}^n \|R(\lambda, s, y_i) - x_i^{\dagger}\|_2^2$$

Lower level (MRI reconstruction):

$$R(\lambda, s, y) = \arg\min_{x} \left\{ \frac{1}{2} || S(Fx - y)||_{2}^{2} + \lambda R(x) \right\}$$

$$S = \operatorname{diag}(s), \quad s_i \in [0, 1]$$

Upper level (learning):

Given training data $(x_i^{\dagger}, y_i)_{i=1}^n$, solve

$$\min_{\lambda \geq 0, s \in [0,1]^m} \frac{1}{n} \sum_{i=1}^n \|R(\lambda, s, y_i) - x_i^{\dagger}\|_2^2 + \beta_1 \|s\|_1 + \beta_2 \|s(1-s)\|_1$$

Lower level (MRI reconstruction):

$$R(\lambda, s, y) = \arg\min_{x} \left\{ \frac{1}{2} \|S(Fx - y)\|_{2}^{2} + \lambda R(x) \right\}$$

$$S = \operatorname{diag}(s), \quad s_i \in [0, 1]$$

Warm up

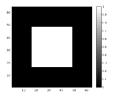
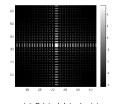
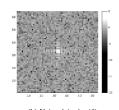


Figure: Discrete 2d bump



(a) Original data: $\log |y|$



(b) Noisy data: $\log |\tilde{y}|$

Warm up

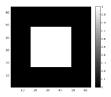
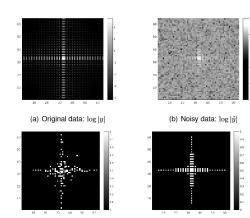


Figure: Discrete 2d bump



(d) Largest 2.76% Fourier Coefficients

(c) Learned sampling pattern

Warm up

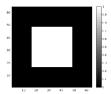
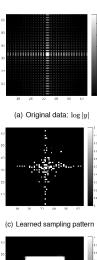
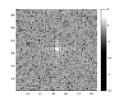


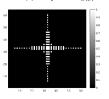
Figure: Discrete 2d bump



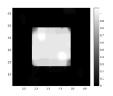
(e) Learned sampling pattern



(b) Noisy data: $\log |\tilde{y}|$

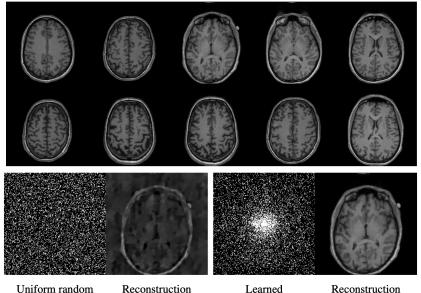


(d) Largest 2.76% Fourier Coefficients



(f) Largest 2.76% Fourier Coefficients

Classical compressed sensing versus learned Sherry et al. 2020



Uniform random Reconstruction

Reconstruction

Increasing sparsity Sherry et al. 2020

Reminder: Upper level (learning)

$$\min_{\substack{\lambda \geq 0, s \in [0,1]^m \\ n}} \frac{1}{n} \sum_{i=1}^n \|R(\lambda, s, y_i) - x_i\|_2^2 + \beta_1 \|s\|_1 + \beta_2 \|s(1-s)\|_1$$

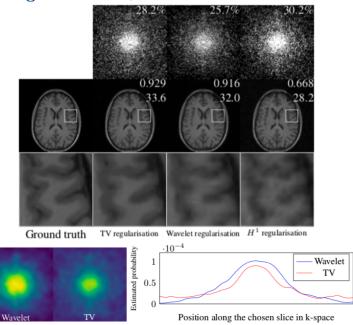
$$\beta = \beta_1 = \beta_2$$

$$0.968 \qquad 0.953 \qquad 0.917$$

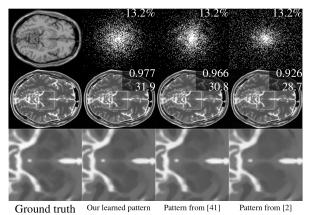
$$39.3 \qquad 35.6 \qquad 33.1$$

Increasing sparsity parameter β

Compare regularizers Sherry et al. 2020



Compare "free" samplings Sherry et al. 2020

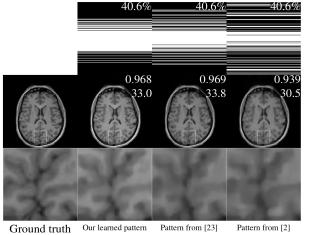


	Pattern type	SSIM	PSNR
Training	Our method	0.977 ± 0.002	32.5 ± 0.2
	Data-adapted [41]	0.968 ± 0.002	31.1 ± 0.1
	Uninformed VDS [2]	0.925 ± 0.005	28.9 ± 0.1
Testing	Our method	0.975 ± 0.003	32.1 ± 0.2
	Data-adapted [41]	0.967 ± 0.003	31.1 ± 0.2
	Uninformed VDS [2]	0.924 ± 0.003	28.8 ± 0.1

"ours" = Sherry et al. 2020 [41] = Knoll et al. 2011

[2] = Lustig et al. 2007

Compare Cartesian samplings Sherry et al. 2020



 Line sampling (40.6%)
 Free pattern (34.7%)

 Our method
 4192
 6494

 The method from [23]
 12087
 3.90 · 108

number of lower-level solves

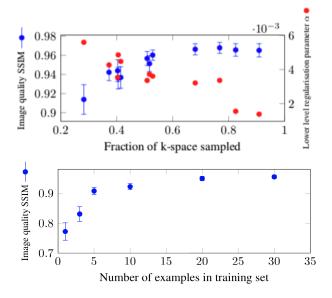
"ours" = Sherry et al. 2020

[23] = Gözcü et al. 2018

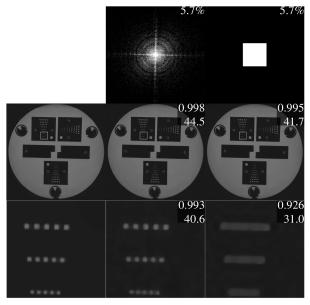
[2] = Lustig et al. 2007

regularizer = TV

More insights: sampling and number of data Sherry et al. 2020



High resolution imaging: 1024^2 Sherry et al. 2020



Inexact Algorithms for Bilevel Learning

Upper level: $\min_{\lambda > 0, \hat{x}} \|\hat{x} - x^{\dagger}\|_2^2$

Lower level:

$$\hat{x} = \arg\min_{x} \left\{ \mathcal{D}(Ax, y) + \frac{\lambda}{\lambda} \mathcal{R}(x) \right\}$$

Upper level: $\min_{\lambda \geq 0, \hat{x}} U(\hat{x})$

Lower level:

 $\hat{x} = \arg\min_{x} \left\{ \mathcal{D}(Ax, y) + \frac{\lambda}{\lambda} \mathcal{R}(x) \right\}$

Upper level: $\min_{\lambda \geq 0, \hat{x}} U(\hat{x})$

Lower level:

 $\hat{x} = \arg\min_{x} L(x, \lambda)$

Upper level: $\min_{\substack{\lambda \geq 0, \hat{x}}} U(\hat{x})$

Lower level:

$$x_{\lambda} := \hat{x} = \arg\min_{x} L(x, \lambda)$$

Reduced formulation: $\min_{\lambda \geq 0} U(x_{\lambda}) =: \tilde{U}(\lambda)$

Upper level: $\min_{\substack{\lambda \geq 0, \hat{x}}} U(\hat{x})$

Lower level:

$$x_{\lambda} := \hat{x} = \arg\min_{x} L(x, \lambda) \quad \Leftrightarrow \quad \partial_{x} L(x_{\lambda}, \lambda) = 0$$

Reduced formulation: $\min_{\lambda>0} U(x_{\lambda}) =: \tilde{U}(\lambda)$

Upper level: $\min_{\lambda \geq 0, \hat{x}} U(\hat{x})$

Lower level:

$$x_{\lambda} := \hat{x} = \arg\min_{x} L(x, \lambda) \quad \Leftrightarrow \quad \partial_{x} L(x_{\lambda}, \lambda) = 0$$

Reduced formulation: $\min_{\lambda>0} U(x_{\lambda}) =: \tilde{U}(\lambda)$

$$0 = \partial_x^2 L(x_{\lambda}, \lambda) \partial_{\lambda} x_{\lambda} + \partial_{\theta} \partial_x L(x_{\lambda}, \lambda) \quad \Leftrightarrow \quad \partial_{\lambda} x_{\lambda} = -B^{-1} A$$

Upper level: $\min_{\substack{\lambda \geq 0, \hat{x}}} U(\hat{x})$

Lower level:

$$x_{\lambda} := \hat{x} = \arg\min_{x} L(x, \lambda) \quad \Leftrightarrow \quad \partial_{x} L(x_{\lambda}, \lambda) = 0$$

Reduced formulation: $\min_{\lambda \geq 0} U(x_{\lambda}) =: \tilde{U}(\lambda)$

$$0 = \partial_x^2 L(x_{\lambda}, \lambda) \partial_{\lambda} x_{\lambda} + \partial_{\theta} \partial_x L(x_{\lambda}, \lambda) \quad \Leftrightarrow \quad \partial_{\lambda} x_{\lambda} = -B^{-1} A$$

$$\nabla \tilde{U}(\lambda) = (\partial_{\lambda} x_{\lambda})^* \nabla U(x_{\lambda})$$

Upper level: $\min_{\substack{\lambda \geq 0, \hat{x}}} U(\hat{x})$

Lower level:

$$x_{\lambda} := \hat{x} = \arg\min_{x} L(x, \lambda) \quad \Leftrightarrow \quad \partial_{x} L(x_{\lambda}, \lambda) = 0$$

Reduced formulation: $\min_{\lambda \geq 0} U(x_{\lambda}) =: \tilde{U}(\lambda)$

$$0 = \partial_x^2 L(x_{\lambda}, \lambda) \partial_{\lambda} x_{\lambda} + \partial_{\theta} \partial_x L(x_{\lambda}, \lambda) \quad \Leftrightarrow \quad \partial_{\lambda} x_{\lambda} = -B^{-1} A$$

$$\nabla \tilde{U}(\lambda) = (\partial_{\lambda} x_{\lambda})^* \nabla U(x_{\lambda})$$
$$= -A^* B^{-1} \nabla U(x_{\lambda}) = -A^* w$$

where w solves $Bw = \nabla U(x_{\lambda})$.

Algorithm for Bilevel learning

Upper level: $\min_{\lambda \geq 0, \hat{x}} U(\hat{x})$

Lower level: $x_{\lambda} := \arg \min_{x} L(x, \lambda)$

Reduced formulation: $\min_{\lambda \geq 0} U(x_{\lambda}) =: \tilde{U}(\lambda)$

- ► Solve reduced formulation via L-BFGS-B Nocedal and Wright 2000
- Compute gradients: Given λ
 - (1) Compute x_{λ} , e.g. via PDHG Chambolle and Pock 2011
 - (2) Solve $Bw = \nabla U(x_{\lambda}), B := \partial_x^2 L(x_{\lambda}, \lambda)$ e.g. via CG
 - (3) Compute $\nabla \tilde{U}(\lambda) = -A^*w$, $A := \partial_\theta \partial_x L(x_\lambda, \lambda)$

Algorithm for Bilevel learning

Upper level: $\min_{\lambda \geq 0, \hat{x}} U(\hat{x})$

Lower level: $x_{\lambda} := \arg \min_{x} L(x, \lambda)$

Reduced formulation: $\min_{\lambda \geq 0} U(x_{\lambda}) =: \tilde{U}(\lambda)$

- ► Solve reduced formulation via L-BFGS-B Nocedal and Wright 2000
- ► Compute gradients: Given λ
 - (1) Compute x_{λ} , e.g. via PDHG Chambolle and Pock 2011
 - (2) Solve $Bw = \nabla U(x_{\lambda}), B := \partial_x^2 L(x_{\lambda}, \lambda)$ e.g. via CG
 - (3) Compute $\nabla \tilde{U}(\lambda) = -A^* w$, $A := \partial_{\theta} \partial_x L(x_{\lambda}, \lambda)$

This approach has a number of problems:

- \triangleright x_{λ} has to be computed
- ightharpoonup Derivative assumes x_{λ} is exact minimizer
- ► Large system of linear equations has to be solved

How to solve Bilevel Problem?

- ► Most people: Ignore "problems", just compute it. e.g. Sherry et al. 2020
- ➤ Semi-smooth Newton: similar fundamental problems Kunisch and Pock 2013
- ▶ Replace lower level problem by finite number of iterations of algorithms: not bilevel anymore Ochs et al. 2015
- ▶ Use algorithm that does not need x_{λ} , gradients etc Ehrhardt and Roberts 2020

Dynamic Accuracy Derivative Free Optimization

$$\min_{\theta} f(\theta)$$

Key idea: make use of $g(\theta, \epsilon)$

$$|f(\theta) - g(\theta, \epsilon)| < \epsilon$$

inexact minimisation of f early, only ask for high accuracy when needed If $g(\theta^{k+1},\epsilon) < g(\theta^k,\epsilon) - 2\epsilon$, then $f(\theta^{k+1}) < f(\theta^k)$.

Dynamic Accuracy Derivative Free Optimization

$$\min_{\theta} f(\theta)$$

Key idea: make use of $g(\theta, \epsilon)$

$$|f(\theta) - g(\theta, \epsilon)| < \epsilon$$

inexact minimisation of f early, only ask for high accuracy when needed If $g(\theta^{k+1}, \epsilon) < g(\theta^k, \epsilon) - 2\epsilon$, then $f(\theta^{k+1}) < f(\theta^k)$.

For k = 0, 1, 2, ...

- 1) Sample f in a neighbourhood of θ_k
- 2) Build model $m_k(\theta) \approx f$
- 3) Minimise m_k in a neighbourhood of 12: If $\theta^{k+1} = \theta^k + s^k$, then build m^{k+1} by adding θ^{k+1} to the inter- θ_{ν} to get $\theta_{\nu+1}$

Algorithm 1 Dynamic accuracy DFO algorithm for (22).

Inputs: Starting point $\theta^0 \in \mathbb{R}^n$, initial trust-region radius $0 < \Lambda^0 <$

Parameters: strictly positive values Δ_{max} , γ_{dec} , γ_{inc} , η_1 , η_2 , η'_1 , ϵ satisfying $\nu_{dec} < 1 < \nu_{inc}$, $\eta_1 \le \eta_2 < 1$, and $\eta'_1 < \min(\eta_1, 1 - 1)$

- Select an arbitrary interpolation set and construct m⁰ (26).
- 2: for $k = 0, 1, 2, \dots$ do
- repeat Evaluate $\widetilde{f}(\theta^k)$ to sufficient accuracy that (32) holds with η'_1 (using s^k from the previous iteration of this inner repeat/until loop). Do nothing in the first iteration of this repeat/until loop.
- By replacing Δ^k with $\gamma^i_{ber}\Delta^k$ for i=0,1,2,..., find m^k and Δ^k such that m^k is fully linear in $B(\theta^k, \Delta^k)$ and $\Delta^k < \|g^k\|$.
- [criticality phase]
- Calculate s^k by (approximately) solving (27).
- until the accuracy in the evaluation of $\tilde{f}(\theta^k)$ satisfies (32) with
 - Evaluate $\tilde{r}(\theta^k + s^k)$ so that (32) is satisfied with n', for $\tilde{f}(\theta^k + s^k)$. and calculate $\tilde{\rho}^{k}$ (29).
- 11: Set θ^{k+1} and Δ^{k+1} as:

$$\theta^{k+1} = \begin{cases} \theta^k + s^k, & \tilde{\rho}^k \ge \eta_2, \text{ or } \tilde{\rho}^k \ge \eta_1 \text{ and } m^k \\ & \text{fully linear in } B(\theta^k, \Delta^k), \\ \theta^k, & \text{otherwise,} \end{cases}$$
(33)

and

$$\Delta^{k+1} = \begin{cases} \min(\gamma_{\text{inc}}\Delta^k, \Delta_{\text{max}}), & \hat{\rho}^k \geq \eta_2, \\ \Delta^k, & \hat{\rho}^k < \eta_2 \text{ and } m^k \text{ not} \\ \text{fully linear in} B(\theta^k, \Delta^k), \end{cases}$$

$$\gamma_{\text{dec}}\Delta^k, & \text{otherwise.} \end{cases}$$
(34)

polation set (removing an existing point). Otherwise, set $m^{k+1} = m^k$ if m^k is fully linear in $B(\theta^k, \Delta^k)$, or form m^{k+1} by making m^k fully linear in $B(\theta^{k+1}, \Delta^{k+1})$.

13: end for

Theoretical Guarantees

Algorithm converges with inexact evaluations of $\hat{x}_i(\theta)$:

Theorem Ehrhardt and Roberts 2020

If f is sufficiently smooth and bounded below, then:

- ► The Dynamic Accuracy DFO algorithm is globally convergent in the sense that $\lim_{k\to\infty} \|\nabla f(\theta_k)\| = 0$.
- All evaluations of $\hat{x}_i(\theta)$ together require at most $\mathcal{O}(\epsilon^{-2}|\log \epsilon|)$ iterations (of gradient descent, FISTA etc.)

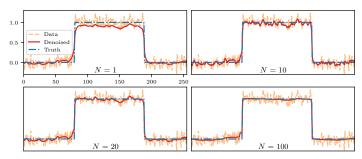
Numerical Results

- Dynamic Accuracy DFO github.com/lindonroberts/inexact_dfo_bilevel_learning
- Use gradient descent & FISTA to calculate $\hat{x}_i(\theta) = \min_x L_i(x, \theta)$
 - Using known Lipschitz and strong convexity constants (depending on θ)
 - Allow arbitrary accuracy in $\hat{x}_i(\theta)$: terminate when $\|\nabla_x L_i\|$ sufficiently small
 - A priori linear convergence bounds too conservative in practice
- Compare to regular DFO with "fixed accuracy" lower-level solutions (constant # iterations of GD/FISTA)
 - In practice, have to guess appropriate # iterations
- Measure decrease in $f(\theta)$ as function of total GD/FISTA iterations

$$\min_{\theta} \left\{ f(\theta) = \frac{1}{2} \sum_{i} \|x_{i}(\theta) - x_{i}\|_{2}^{2} + \beta \left(\frac{L(\theta)}{\kappa(\theta)}\right)^{2} \right\}$$

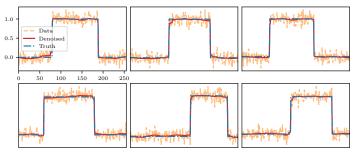
$$x_{i}(\theta) = \arg\min_{x} \frac{1}{2} \|x - y_{i}\|_{2}^{2} + \alpha \left(\sum_{j} \sqrt{\|(\nabla x)_{j}\|_{2}^{2} + \nu^{2}} + \frac{\xi}{2} \|x\|_{2}^{2}\right)$$

With more evaluations of $f(\theta)$, the parameter choices give better reconstructions:



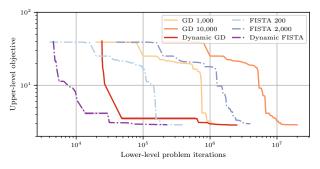
Reconstruction of x_1 after N evaluations of $f(\theta)$

Final learned parameters give good reconstructions of all training data:



Final reconstructions after 100 evaluations of $f(\theta)$

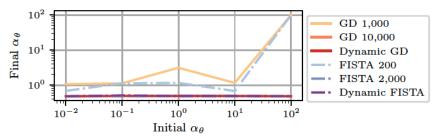
Dynamic accuracy is faster than "fixed accuracy" (at least 10x speedup):



Objective value $f(\theta)$ vs. computational effort

1D Denoising Problem

Always learns the same parameter for sufficient accuracy.

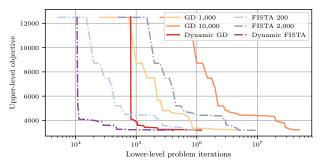


Robustness to initialization

2D denoising — final learned parameters give good reconstructions...

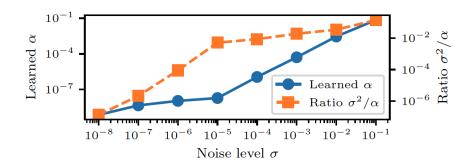
Final reconstructions after 100 evaluations of $f(\theta)$

2D denoising — ... and dynamic accuracy is still 10x faster than fixed accuracy:



Objective value $f(\theta)$ vs. computational effort

Conjecture: Bilevel learning is a convergent regularization.



Convergent regularization?

MRI Sampling revisited

MRIs measure a subset of Fourier coefficients of an image: reconstruct using

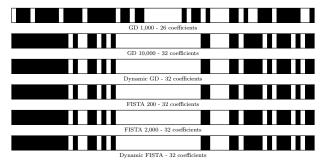
$$\min_{x} \frac{1}{2} ||S(Fx-y)||^2 + \mathcal{R}(x)$$

where sampling pattern $S = \text{diag}(s_1, \ldots, s_d)$.

- Use same smoothed TV regulariser \mathcal{R} (with fixed α , ν , ξ)
- Learn $s_j(heta) := \sqrt{ heta_j/(1- heta_j)}$ Chen et al. 2014
- ▶ Promote sparsity: $\mathcal{J}(\theta) = \|\theta\|_1$.

Learning MRI Sampling Patterns

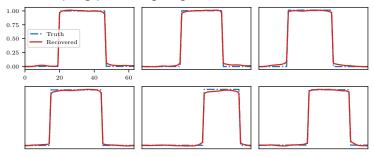
All variants learn 50% sparse sampling patterns:



Learned sampling patterns (white = active)

Learning MRI Sampling Patterns

Learned sampling patterns give good reconstructions:

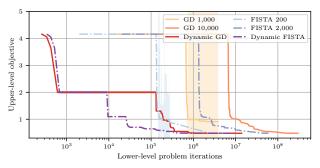


Final reconstructions after 3000 evaluations of $f(\theta)$

Robustness to lower-level solver with "enough" accuracy

Learning MRI Sampling Patterns

... and dynamic accuracy is still substantially faster than fixed accuracy:



Objective value $f(\theta)$ vs. computational effort

Conclusions and Outlook

Conclusions

- ▶ **Bilevel learning**: supervised learning framework to learn parameters in variational regularization
- Learned sampling better than generic sampling
 - "Optimal" sampling depends on regularizer
 - ► Very little data needed
- Optimization plays a key role in bilevel learning
 - Dynamic accuracy: no need to specify number of iterations
 - Improved algorithms speed up learning significantly
 - Make learning surprisingly robust

Future work

- Stochastic algorithms (like stochastic gradient descent etc)
- ► Nonsmooth or nonconvex lower-level problems
- ► Inexact gradient methods