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Inverse problems
Ax =y

x : desired solution
y : observed data
A : mathematical model

Goal: recover X given Y/

Hadamard (1902): We call an inverse problem
Ax = y well-posed if

(1) a solution x* exists
(2) the solution x* is unique

(3) x* depends continuously on data y.

Otherwise, it is called ill-posed. Jacques Hadamard

Most interesting problems are ill-posed.



How to solve inverse problems?
Variational regularization (~1990)

Approximate a solution x* of Ax = y via

X € arg min{D(AX,y) + )\R(X)}

R regularizer: penalizes unwanted features, ensures stability
and uniqueness

A regularization parameter: \ > 0. If A =0, then an original
solution is recovered. If A — oo, more and more weight is
given to the regularizer R.

textbooks: Scherzer et al. 2008, Ito and Jin 2015, Benning and Burger 2018



Example: Regularizers

» Tikhonov regularization (~1960) R(x) = |1x]13
> H! (~1960-19907?) R(x) = %||Vx|[3
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Example: Regularizers

> Tikhonov regularization (~1960): R(x) = 1|x[|3
> H! (~1960-19907?) R(x) = 5||Vx|[3
» Total Variation R(x) = ||Vx||1 Rudin, Osher, Fatemi 1992
» "Higher Order” Total Variation R(x) = ||V2x||1
» Total Generalized Variation
R(X) = infv ||VX — V||1 + BHVVHl Bredies, Kunisch, Pock 2010

Noisy imae. | TGV? denoised image

How to choose the regularization?



More " complicated” regularizers
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More " complicated” regularizers

Noisy Image
—— True Image
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» Smooth and strongly convex
» Solution depends on choices of a, v and &
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More " complicated” regularizers

1 §
mxmiqu—ynaa(z u<w>ju§+u2+§||x||%)
J

~TV(x)

» Smooth and strongly convex
» Solution depends on choices of a, v and &

Vary ¢ (a =1, v =1073)

o | =

054 Truth -
' == Denoised T

0.0 _—“ =

£€=0.01 £=0.1 £=1
0 50 100 150 200 250

How to choose all these parameters?



Example: Magnetic Resonance Imaging (MRI)

Continuous model: Fourier transform
Ax(s) :/ x(s) exp(—ist)dt
RZ

Dicrete model: A = SF € C"*N

Solution not unique.



Example: MRI reconstruction

Compressed Sensing MRI:
A=SoF Lustig, Donoho, Pauly 2007
Fourier transform F, sampling Sw = (w;);cq

1
% € arg mXin{§||SFx —yl5+ )\||Vx||1}

- /A 1T
Miki Lustig

sampling S*y
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Example: MRI reconstruction

Compressed Sensing MRI:
A=SoF Lustig, Donoho, Pauly 2007
Fourier transform F, sampling Sw = (w;);cq
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% € arg mXin{§||5Fx —yl5+ )\||Vx||1}

Epi !
AL
i




Example: MRI reconstruction

Compressed Sensing MRI:
A=SoF Lustig, Donoho, Pauly 2007
Fourier transform F, sampling Sw = (w;);cq

1
% € arg mXin{§||5Fx —yl5+ )\||Vx||1}

> 4

Miki Lustig

sampling S*y A=0 A=10"3

How to choose the sampling 57 Is there an optimal sampling?

Does a good sampling depend on R and A7



Bilevel Learning



Bilevel learning for inverse problems



Bilevel learning for inverse problems
Upper level (learning):
Given (x,y),y = Ax" + ¢, solve

. s -l- 2
N

b

Lower level (solve inverse problem):

X € arg mxin {D(AX, Y) =+ /\R(X)} Carola Schonlieb

von Stackelberg 1934, Kunisch and Pock 2013, De los Reyes and Schonlieb 2013



Bilevel learning for inverse problems

Upper level (learning):
Given (xiT,y,-),’-’:l,y,- = AXT + ¢}, solve

- b
g 23 -

Lower level (solve inverse problem):
%; € argmin {D(Ax, yi) + AR(x)} Carola Schanlieb

von Stackelberg 1934, Kunisch and Pock 2013, De Ios Reyes and Schonlleb 2013

ynwnqmﬁ W%Q




Denoising: Learning two TGV parameters.

R(x) =inf, [|[Vx — v|1 + B]|VVv]|1

(a) Too low 8 / High oscil- (b) Optimal 3 (¢) Too high 2 / almost TV

lation

De los Reyes, Schénlieb, Valkonen 2017



Denoising: fields of experts regularisation

Learning filters Kj and potential functions pj for fields of experts
regularisation
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Learn sampling pattern in MRI



Some important works on sampling for MRI

Uninformed
» Cartesian, radial, variable density ... e.g. Lustig et al. 2007
Ve simple to implement
X not tailored to application or reconstruction method
P compressed sensing: random sampling e.g. Candes and Romberg 2007
v/ mathematical guarantees
X limited to sparse signals and sparsity promoting regularizers



Some important works on sampling for MRI

Uninformed
» Cartesian, radial, variable density ... e.g. Lustig et al. 2007
Ve simple to implement
X not tailored to application or reconstruction method
P compressed sensing: random sampling e.g. Candes and Romberg 2007
v/ mathematical guarantees
X limited to sparse signals and sparsity promoting regularizers
Learned
> Largest Fourier coefficients of training set Knoll et al. 2011
v simple to implement, computationally light
X not tailored to reconstruction method
> greedy: iteratively select "best” sample e.g. Gozcii et al. 2018
Ve adaptive to dataset, reconstruction method
X only discrete values; computationally heavy
> Deep learning: e.g. specify sampling as continuous
parameters in network Wang et al. 2021
v realistic and easy to implement sampling patterns
v end-to-end
X limited to neural network reconstruction



Learn sampling pattern in MRI

S =diag(s), s €{0,1}

Sherry et al. 2020



Learn sampling pattern in MRI

Upper level (learning):
Given training data ( ,T,y,) ' ,, solve

)\>Ose{0 1}m nZHR (A, s, ) _XiT||2

Lower level (MRI reconstruction):

RO\ s.9) = argmin { SIS(Fx = )3 + ARG |

S =diag(s), s €{0,1}

Sherry et al. 2020



Learn sampling pattern in MRI

Upper level (learning):
Given training data ( ,T,y,) ' ,, solve

.|.
,\>05€[01]m nZHR (5,3 =I5

Lower level (MRI reconstruction):

RO\ s.9) = argmin { SIS(Fx = )3 + ARG |

S =diag(s), s €][0,1]

Sherry et al. 2020



Learn sampling pattern in MRI

Upper level (learning):
Given training data ( ,T,y,) ' ,, solve

A>0 56[0 17 n Z IRCA, s, yi) = X;r||2+51||5”1 + B2lls(1 —s)llx

Lower level (MRI reconstruction):

RO\ s.9) = argmin { SIS(Fx = )3 + ARG |

S =diag(s), s €][0,1]

Sherry et al. 2020



Figure: Discrete 2d bump

(a) Original data: log |y|

(b) Noisy data:

log 3]



Figure: Discrete 2d bump

(c) Learned sampling pattern (d) Largest 2.76% Fourier Coefficients



Figure: Discrete 2d bump (a) Original data: log |y|

) Learned sampling pattern

oo

(e) Learned sampling pattern (f) Largest 2.76% Fourier Coefficients




Classical compressed sensing versus learned sherry et al. 2020

Uniform random Reconstruction Reconstruction




Increasing sparsity sherry et al. 2020

Reminder: Upper level (learning)

ZIIR A, s, ¥i) = xill3+B sl + Balls(1 = )l

min
A>0,5€[0,1]™ N

B=p1=P5

Increasing sparsity parameter 3



Compare regularizers sherry et al. 2020

Ground truth TV regularisation  Wavelet regularisation  H' ' regularisation

= 1074

E- I | — —— Wavelet

Jé_ g \ v
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g 0= -

Wavelet / Position along the chosen slice in k-space



Compare "free” samplings sherry et al. 2020

— 13.2%. .. 21329

Ground truth  Our learned pattern Pattern from [41] Pattern from [2]

Pattern type SSIM PSNR ” ”
Training | Our method 0.977 0002 | 325102 ours’ = Sherry et al. 2020
Data-adapted [41] 0.968 +0.002 | 31.14+0.1
Uninformed VDS [2] | 0.925 +0.005 | 28.9 0.1 [41] = Kbnoll et al. 2011
Testing Our method 0.975 £0.003 | 32.14+0.2 .
Data-adapted [41] 0.967 £ 0.003 | 31.14+0.2 [2] = Lustig et al. 2007
Uninformed VDS [2] | 0.924 £0.003 | 28.8 +0.1

regularizer = dTV Ehrhardt and Betcke 2016



0.968 0.969
330 faw 338

\

Ground truth  Our learned pattern Pattern from [23] Pattern from [2]

"ours” = Sherry et al. 2020
Line sampling (40.6%) | Free pattern (34.7%)
Our method 7192 6494 [23] = Gézcii et al. 2018
The method from [23] | 12087 3.90 - 108

= Lusti 2
number of lower-level solves [2] = Lustig et al. 2007

regularizer = TV



More insights: sampling and number of data sherry et al. 2020
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High resolution imaging: 10242 shery et al. 2020




Inexact Algorithms for Bilevel Learning



Bilevel learning: Reduced formulation

Upper level: min_||% — xT||?
A>0,%

»
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Bilevel learning: Reduced formulation

Upper level: min U(X)
A>0,%



Bilevel learning:

Upper level:

Lower level:

X\ = X

Reduced formulation

g V)

= argmin L(x, \)

Reduced formulation: min U(x,) =: U())

A>0



Bilevel learning: Reduced formulation
Upper level: min U(X)
A>0,%
Lower level:
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Reduced formulation: min U(x,) =: U())
A>0



Bilevel learning: Reduced formulation
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Bilevel learning: Reduced formulation

Upper level: min U(X)
A>0,%

Lower level:
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Reduced formulation: min U(x,) =: U())
A>0
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Bilevel learning: Reduced formulation

Upper level: min U(X)
A>0,%

Lower level:
x\:=X=argminl(x,\) < 0OL(x\,)\)=0

Reduced formulation: min U(x,) =: U())
A>0

0= a)%L(X)\, )\)a,\X)\ + agaX/_(X/\, )\) &S X, = —B7lA

VU(N) = (03x0)*VU(x))
=-A"B7'VU(x) = —A*w

where w solves Bw = VU(xy).



Algorithm for Bilevel learning

Upper level: miny -z U(X)
Lower level: x, := argminy L(x, \)
Reduced formulation: min,~o U(x\) =: U()\)

» Solve reduced formulation via L-BFGS-B Nocedal and Wright 2000
> Compute gradients: Given A

(1) Compute x,, e.g. via PDHG Chambolle and Pock 2011

(2) Solve Bw = VU(xy), B := 07L(xr, \) e.g. via CG
(3) Compute VU(N) = —A*w, A := 9pdyL(xx, \)



Algorithm for Bilevel learning

Upper level: miny -z U(X)
Lower level: x, := argminy L(x, \)
Reduced formulation: min,~o U(x\) =: U()\)

» Solve reduced formulation via L-BFGS-B Nocedal and Wright 2000
» Compute gradients: Given A

(1) Compute xy, e.g. via PDHG Chambolle and Pock 2011
(2) Solve Bw = VU(xy), B := 0ZL(x», \) e.g. via CG
(3) Compute VU(N) = —A*w, A := 0p0xL(xx, \)

This approach has a number of problems:
> x, has to be computed
» Derivative assumes x) is exact minimizer

P> Large system of linear equations has to be solved



How to solve Bilevel Problem?

> Most people: Ignore " problems”, just compute it. e.g. Sherry et
al. 2020

» Semi-smooth Newton: similar fundamental problems Kunisch
and Pock 2013

P> Replace lower level problem by finite number of iterations of
algorithms: not bilevel anymore Ochs et al. 2015

P Use algorithm that does not need x,, gradients etc Ehrhardt and
Roberts 2020



Dynamic Accuracy Derivative Free Optimization
min f(0)
Key idea: make use of g(6,¢€)
£(0) — g(0.€)| <e

inexact minimisation of f early, only ask
for high accuracy when needed

If g(0xt1e) < g(6%,€) — 2¢ then
fF(OK+1) < £(0%).



Dynamic Accuracy Derivative Free Optimization

Algorithm 1 Dynamic accuracy DFO algorithm for (22).

main f(0)

Key idea: make use of g(6,¢€)

Eol

£(0) —g(0, )] <€

&
inexact minimisation of f early, only ask
for high accuracy when needed ’

If g0kt e) < g(6% ) — 2
fF(OK+1) < £(0%).
For k=0,1,2,...
1) Sample f in a neighbourhood of 6
2) Build model mg(0) ~ f

3) Minimise my in a neighbourhood of =

Ok to get Ox41

then

1

13

Inputs: Starting point 8° € R”, initial trust-region radius 0 < A® <
Amax.
Parameters: strictly positive values Amax. Yace. Yine. 71, 12, 7}, €
satisfying yoec < 1 < Yine, M < M2 < 1, and 0} < min(yi, 1 —
)12
Select an arbitrary interpolation set and construct m® (26).
fork=0,12,...do

repeat .

Evaluate f(6%) to sufficient accuracy that (32) holds with
(using s* from the previous iteration of this inner repeat/until loop).
Do nothing in the first iteration of this repeat/until loop.

if [|¢5]| < ¢ then

By replacing A* with yj A% for i =0,1,2,..., find m*
and A such that m* is fully linear in B8, A¥) and A% < |ig¥||.
[eriticality phase]

end if

Calculate s* by (approximately) solving (27).

until the accuracy in the evaluation of f(6*) satisfies (32) with
r;' [accuracy phase]
Evaluate 7(6* 4+ s*) so that (32) is satisfied with ] for e +sh),
and calculate 3* (29).

Set 04+ and A as:

0% 5%, B = my.or p* = ny and m*

Pt — fully linear in B(@*, A%), (33)
ok, otherwise,

and
min(yine A, Amax), % = m,

e |4 Pemandmtnot gy

fully linear inB(g*, A%),

yaecAX, otherwise.

If6*! = * 4 5*, then build m**" by adding #**" to the inter-
polation set (removing anexisting point). Otherwise, setm*+! = m*
if m* is fully linear in B(8%, A¥), or form m*+" by making m* fully
linear in B(6k+1, AkT1)

end for




Theoretical Guarantees

Algorithm converges with inexact evaluations of X;(0):

Theorem Ehrhardt and Roberts 2020

If f is sufficiently smooth and bounded below, then:

» The Dynamic Accuracy DFO algorithm is globally convergent
in the sense that limy_,~ [|[V(0k)| = 0.

> All evaluations of %;(6) together require at most O(c 2| log )
iterations (of gradient descent, FISTA etc.)



Numerical Results

» Dynamic Accuracy DFO
github.com/lindonroberts/inexact_dfo_bilevel learning
» Use gradient descent & FISTA to calculate
)?,(9) = minX L,'(X, 9)
— Using known Lipschitz and strong convexity constants
(depending on 6)
— Allow arbitrary accuracy in X;(6): terminate when ||V, L;|
sufficiently small
— A priori linear convergence bounds too conservative in practice
» Compare to regular DFO with “fixed accuracy” lower-level
solutions (constant # iterations of GD/FISTA)
— In practice, have to guess appropriate # iterations

» Measure decrease in f(6) as function of total GD/FISTA
iterations



1D Denoising Problem (learn «, v and &)

n{fw):;ZHx;( ,||2+5(L§Z§)}

1 ¢
xi(0) = argmin 2 |lx — yil|3 + o <Z (V)13 +v2 + 2HXH§>
J

With more evaluations of f(6), the parameter choices give better
reconstructions:

1.0 4

0.5 4

0.0 P
N =10

N =100

Reconstruction of x; after N evaluations of (0)



1D Denoising Problem (learn «, v and &)

Final learned parameters give good reconstructions of all training

data:

L
L

Final reconstructions after 100 evaluations of f(6)




1D Denoising Problem (learn «, v and &)

Dynamic accuracy is faster than “fixed accuracy” (at least 10x
speedup):

10%
GD 1,000 FISTA 200
GD 10,000 =+ FISTA 2,000
o —_ = Dynamic GD ==+ Dynamic FISTA
E | | \
= \ e,
o b —
E: \ \
2 10" A =, :
& \ )
3
a 3 \
[ \ o
= —— \
[ v e W L
T T T T
10* 10° 10° 107

Lower-level problem iterations

Objective value () vs. computational effort



1D Denoising Problem

Always learns the same parameter for sufficient accuracy.

102
3 GD 1,000
s ] GD 10,000
= 10! 3 === Dynamic GD
A ] FISTA 200
= oo ] — - FISTA 2,000
E =« Dynamic FISTA
102 10—t 10° 10t 102
Initial ag

Robustness to initialization



2D Denoising Problem (learn «, v and &)

2D denoising — final learned parameters give good
reconstructions...

Final reconstructions after 100 evaluations of ()



2D Denoising Problem (learn «, v and ¢)

2D denoising — ... and dynamic accuracy is still 10x faster than
fixed accuracy:

I =T GD 1,000 FISTA 200
12000 H GD 10,000 =+ FISTA 2,000
° | \ = Dynamic GD =+ Dynamic FISTA
= . .
5 10000 1 | {
2 : .
° | .
< 8000 4 l \
E3 .
3 - }
£ 6000 | \
[ H .
S i -
4000 4 ——— =
Bl S e p_p Sl = SN —
T T T T
10" 10° 10° 107

Lower-level problem iterations

Objective value f(f) vs. computational effort



2D Denoising Problem (learn «, v and ¢)

Conjecture: Bilevel learning is a convergent regularization.

Learned «

_m -
/.— .—

== Learned o

== Ratio o2 /o

107* 1072 1072 107!

107% 1077 1079 10°°
Noise level o

Convergent regularization?



MRI Sampling revisited

MRIs measure a subset of Fourier coefficients of an image:
reconstruct using

1
min 2 |[S(Fx — YIZ+R(x)

where sampling pattern S = diag(s1, ..., Sq)-

» Use same smoothed TV regulariser R (with fixed «, v, &)

» Learn s;(0) := /0;/(1 — 0}) Chen et al. 2014

» Promote sparsity: J(0) = ||0]]1.



Learning MRI Sampling Patterns

All variants learn 50% sparse sampling patterns:

GD 1,000 - 26 coefficients

BEENINII ¥ ININE

GD 10,000 - 32 coefficients

BEENINII ¥ ININE

Dynamic GD - 32 coefficients

BEENINII ¥ ININE

FISTA 200 - 32 coefficients

BEENINII ¥ ININE

FISTA 2,000 - 32 coefficients

BEENINII ¥ ININE

Dynamic FISTA - 32 coefficients

Learned sampling patterns (white = active)



Learning MRI Sampling Patterns

Learned sampling patterns give good reconstructions:

1.00 A
0.75 I
==+ Truth

0.50

= Recovered

0.25 4

0.00 +

Final reconstructions after 3000 evaluations of f(0)

Robustness to lower-level solver with " enough” accuracy



Learning MRI Sampling Patterns

. and dynamic accuracy is still substantially faster than fixed

accuracy:
5
GD 1,000 FISTA 200
GD 10,000 =+ FISTA 2,000
o 44 — —— Dynamic GD =+ Dynamic FISTA
>
3 !
g |
2 -
524 |
)
& | | i
=) :
1 be— \‘ =
Al 5= = Bkl "
T

T T T T
10% 10* 10° 10° 107 10%
Lower-level problem iterations

Objective value f(f) vs. computational effort



Conclusions and Outlook

Conclusions
> . supervised learning framework to learn
parameters in variational regularization
» Learned sampling better than generic sampling

» " Optimal” sampling depends on regularizer
» Very little data needed

» Optimization plays a key role in bilevel learning

» Dynamic accuracy: no need to specify number of iterations
» Improved algorithms learning significantly
» Make learning surprisingly robust

Future work
» Stochastic algorithms (like stochastic gradient descent etc)
> or nonconvex lower-level problems

> Inexact gradient methods



