Bilevel Learning for Inverse Problems

Matthias J. Ehrhardt

Department of Mathematical Sciences, University of Bath, UK

May 14, 2021

Joint work with:
L. Roberts (ANU, Australia)

F. Sherry, M. Graves, G. Maierhofer, G. Williams, C.-B. Schönlieb (all Cambridge, UK), M. Benning (Queen Mary, UK), J.C. De los Reyes (EPN, Ecuador)
Outline

1) Motivation

\[\min_x \frac{1}{2} \| Ax - y \|_2^2 + \lambda \mathcal{R}(x) \]

2) Bilevel Learning

\[\min_{x,y} f(x, y) \]
\[x \in \text{arg min}_z g(z, y) \]

3) Efficient solution?
Yes, e.g. inexact DFO algorithms
Ehrhardt and Roberts JMIV 2021

4) High-dimensional learning?
Yes, e.g. learn MRI sampling
Sherry et al. IEEE TMI 2020
Inverse problems

\[Ax = y \]

- \(x \): desired solution
- \(y \): observed data
- \(A \): mathematical model

Goal: recover \(X \) given \(Y \)
Inverse problems

\[Ax = y \]

- \(x \): desired solution
- \(y \): observed data
- \(A \): mathematical model

Goal: recover \(X \) given \(Y \)

Hadamard (1902): We call an inverse problem \(Ax = y \) **well-posed** if

1. a solution \(x^* \) **exists**
2. the solution \(x^* \) is **unique**
3. \(x^* \) depends **continuously** on data \(y \).

Otherwise, it is called **ill-posed**.

Most interesting problems are **ill-posed**.
How to solve inverse problems?

Variational regularization (∼1990)
Approximate a solution x^* of $Ax = y$ via

$$\hat{x} \in \arg \min_x \left\{ D(Ax, y) + \lambda R(x) \right\}$$

D data fidelity, related to noise statistics

R *regularizer*: penalizes unwanted features, ensures stability and uniqueness

λ *regularization parameter*: $\lambda \geq 0$. If $\lambda = 0$, then an original solution is recovered. As $\lambda \to \infty$, more and more weight is given to the regularizer R.

textbooks: Scherzer et al. 2008, Ito and Jin 2015, Benning and Burger 2018
Example: Regularizers

- Tikhonov regularization: $\mathcal{R}(x) = \frac{1}{2} \|x\|_2^2$
- H^1 squared semi-norm: $\mathcal{R}(x) = \frac{1}{2} \|\nabla x\|_2^2$

Rudin, Osher, Fatemi 1992

“Higher Order” Total Variation $\mathcal{R}(x) = \|\nabla^2 x\|_1$ Hinterberger and Scherzer 2004

Total Generalized Variation $\mathcal{R}(x) = \inf_v \|\nabla x - v\|_1 + \beta \|\nabla v\|_1$ Bredies, Kunisch, Pock 2010

How to choose the regularization?
Example: Regularizers

- Tikhonov regularization: $\mathcal{R}(x) = \frac{1}{2} \| x \|_2^2$
- H^1 squared semi-norm: $\mathcal{R}(x) = \frac{1}{2} \| \nabla x \|_2^2$
- Total Variation $\mathcal{R}(x) = \| \nabla x \|_1$
 Rudin, Osher, Fatemi 1992

Noisy image

TV denoised image
Example: Regularizers

- Tikhonov regularization: $R(x) = \frac{1}{2} \| x \|_2^2$
- H^1 squared semi-norm: $R(x) = \frac{1}{2} \| \nabla x \|_2^2$
- Total Variation $R(x) = \| \nabla x \|_1$ Rudin, Osher, Fatemi 1992
- ”Higher Order” Total Variation $R(x) = \| \nabla^2 x \|_1$ Hinterberger and Scherzer 2004

Noisy image

TV2 denoised image
Example: Regularizers

- Tikhonov regularization: \(R(x) = \frac{1}{2} \| x \|_2^2 \)
- \(H^1 \) squared semi-norm: \(R(x) = \frac{1}{2} \| \nabla x \|_2^2 \)
- Total Variation \(R(x) = \| \nabla x \|_1 \) Rudin, Osher, Fatemi 1992
- ”Higher Order” Total Variation \(R(x) = \| \nabla^2 x \|_1 \) Hinterberger and Scherzer 2004
- Total Generalized Variation \(R(x) = \inf_v \| \nabla x - v \|_1 + \beta \| \nabla v \|_1 \) Bredies, Kunisch, Pock 2010

Noisy image

\(\text{TGV}^2 \) denoised image
Example: Regularizers

- **Tikhonov regularization**: \(R(x) = \frac{1}{2} \| x \|^2 \)
- **\(H^1 \) squared semi-norm**: \(R(x) = \frac{1}{2} \| \nabla x \|^2 \)
- **Total Variation** \(R(x) = \| \nabla x \|_1 \) Rudin, Osher, Fatemi 1992
- **”Higher Order” Total Variation** \(R(x) = \| \nabla^2 x \|_1 \) Hinterberger and Scherzer 2004
- **Total Generalized Variation**
 \[R(x) = \inf_v \| \nabla x - v \|_1 + \beta \| \nabla v \|_1 \] Bredies, Kunisch, Pock 2010

How to choose the regularization?
More ”complicated” regularizers

\[
\min_x \frac{1}{2} \|Ax - y\|_2^2 + \alpha \left(\sum_j \| \nabla x_j \|_2 \right)
= \text{TV}(x)
\]
More "complicated" regularizers

\[
\min_x \frac{1}{2} \|Ax-y\|_2^2 + \alpha \left(\sum_j \sqrt{\| (\nabla x)_j \|_2^2} + \nu^2 \right) \approx \text{TV}(x)
\]
More "complicated" regularizers

\[
\min_x \frac{1}{2} \|Ax - y\|_2^2 + \alpha \left(\sum_j \sqrt{\|\nabla x_j\|_2^2 + \nu^2} + \frac{\xi}{2} \|x\|_2^2 \right) \approx \text{TV}(x)
\]

- Smooth and strongly convex
- Solution depends on choices of \(\alpha\), \(\nu\) and \(\xi\)
More "complicated" regularizers

\[
\min_x \frac{1}{2} \|Ax - y\|_2^2 + \alpha \left(\sum_j \sqrt{\| (\nabla x)_j \|_2^2 + \nu^2} + \frac{\xi}{2} \|x\|_2^2 \right)
\approx \text{TV}(x)
\]

- Smooth and strongly convex
- Solution depends on choices of \(\alpha \), \(\nu \) and \(\xi \)

Vary \(\alpha \) (\(\nu = 10^{-3}, \xi = 10^{-3} \))
More "complicated" regularizers

\[
\min_x \frac{1}{2} \|Ax - y\|_2^2 + \alpha \left(\sum_j \sqrt{\|\nabla(x)_j\|_2^2 + \nu^2} + \frac{\xi}{2} \|x\|_2^2 \right) \\
\approx TV(x)
\]

- Smooth and strongly convex
- Solution depends on choices of \(\alpha, \nu, \xi\)

Vary \(\nu (\alpha = 1, \xi = 10^{-3})\)
More "complicated" regularizers

\[
\min_x \frac{1}{2} \|Ax - y\|^2_2 + \alpha \left(\sum_j \sqrt{\|\nabla x\|_2^2 + \nu^2 + \frac{\xi}{2} \|x\|^2_2} \right) \\ \approx TV(x)
\]

- Smooth and strongly convex
- Solution depends on choices of \(\alpha\), \(\nu\) and \(\xi\)

Vary \(\xi\) (\(\alpha = 1\), \(\nu = 10^{-3}\))

How to choose all these parameters?
Example: Magnetic Resonance Imaging (MRI)

Continuous model: Fourier transform

\[A x(s) = \int_{\mathbb{R}^2} x(s) \exp(-ist) \, dt \]

Discrete model: \(A = SF \in \mathbb{C}^{n \times N} \)

Solution *not unique.*
Example: MRI reconstruction

Compressed Sensing MRI:

\[A = S \circ F \]

Lustig, Donoho, Pauly 2007

Fourier transform \(F \), sampling \(S_w = (w_i)_{i \in \Omega} \)

\[\hat{x} \in \arg \min_x \left\{ \sum_{i \in \Omega} |(Fx)_i - y_i|^2 + \lambda \|\nabla x\|_1 \right\} \]

Sampling \(S^*y \)

\(\lambda = 0 \)

\(\lambda = 1 \)
Example: MRI reconstruction

Compressed Sensing MRI:

\[A = S \circ F \]

Lustig, Donoho, Pauly 2007

Fourier transform \(F \), sampling \(S w = (w_i)_{i \in \Omega} \)

\[\hat{x} \in \arg \min_x \left\{ \sum_{i \in \Omega} |(F x)_i - y_i|^2 + \lambda \| \nabla x \|_1 \right\} \]

How to choose the sampling \(\Omega \)? Is there an optimal sampling?

Does a good sampling depend on \(R \) and \(\lambda \)?

Miki Lustig

sampling \(S^* y \)

\(\lambda = 0 \)

\(\lambda = 10^{-4} \)
Example: MRI reconstruction

Compressed Sensing MRI:

\[A = S \circ F \quad \text{Lustig, Donoho, Pauly 2007} \]

Fourier transform \(F \), sampling \(Sw = (w_i)_{i \in \Omega} \)

\[\hat{x} \in \arg \min_x \left\{ \sum_{i \in \Omega} |(Fx)_i - y_i|^2 + \lambda \|\nabla x\|_1 \right\} \]

Miki Lustig

- Sampling \(S^*y \)
- \(\lambda = 0 \)
- \(\lambda = 10^{-4} \)
Compressed Sensing MRI:

\[A = S \circ F \]
Lustig, Donoho, Pauly 2007

Fourier transform \(F \), sampling \(S w = (w_i)_{i \in \Omega} \)

\[
\hat{x} \in \arg \min_x \left\{ \sum_{i \in \Omega} |(Fx)_i - y_i|^2 + \lambda \|\nabla x\|_1 \right\}
\]

How to choose the sampling \(\Omega \)? Is there an optimal sampling?

Does a good sampling depend on \(R \) and \(\lambda \)?
Inverse problems can be solved via variational regularization.
Motivation

- **Inverse problems** can be solved via **variational regularization**

- These models have **a number of parameters**: regularizer, regularization parameter, sampling, smoothness, strong convexity ...
Inverse problems can be solved via variational regularization

These models have a number of parameters: regularizer, regularization parameter, sampling, smoothness, strong convexity ...

Some of these parameters have underlying theory and heuristics but are generally still difficult to choose in practice
Bilevel Learning
Bilevel learning for inverse problems

\[\hat{x} \in \arg \min_{x} \{ D(Ax, y) + \lambda R(x) \} \]
Bilevel learning for inverse problems

Upper level (learning):
Given \((x^\dagger, y), y = Ax^\dagger + \varepsilon\), solve

\[
\min_{\lambda \geq 0, \hat{x}} \left\| \hat{x} - x^\dagger \right\|^2_2
\]

Lower level (solve inverse problem):
\[
\hat{x} \in \arg\min_x \{ D(Ax, y) + \lambda \mathcal{R}(x) \}
\]

colored_box: Bilevel learning for inverse problems

Carola Schönlieb

colored_box: Carola Schönlieb

colored_box: von Stackelberg 1934, Kunisch and Pock 2013, De los Reyes and Schönlieb 2013
Bilevel learning for inverse problems

Upper level (learning):
Given \((x_i^\dagger, y_i)_{i=1}^n, y_i = Ax_i^\dagger + \varepsilon_i\), solve

\[
\min_{\lambda \geq 0, \hat{x_i}} \frac{1}{n} \sum_{i=1}^n \| \hat{x_i} - x_i^\dagger \|_2^2
\]

Lower level (solve inverse problem):

\[
\hat{x_i} \in \arg \min_x \{ D(Ax, y_i) + \lambda R(x) \}
\]
Inexact Algorithms for Bilevel Learning
Bilevel learning: Reduced formulation

Upper level:

\[
\min_{\lambda \geq 0, \hat{x}} \| \hat{x} - x^\dagger \|_2^2
\]

Lower level:

\[
\hat{x} = \arg \min_x \{ D(Ax, y) + \lambda R(x) \}
\]
Bilevel learning: Reduced formulation

Upper level:

$$\min_{\lambda \geq 0, \hat{x}} U(\hat{x})$$

Lower level:

$$\hat{x} = \arg \min_x \{ D(Ax, y) + \lambda R(x) \}$$
Bilevel learning: Reduced formulation

Upper level: \[\min_{\lambda \geq 0, \hat{x}} U(\hat{x}) \]

Lower level: \[\hat{x} = \arg \min_x L(x, \lambda) \]
Bilevel learning: Reduced formulation

Upper level: \[
\min_{\lambda \geq 0, \hat{x}} U(\hat{x})
\]

Lower level:
\[
x(\lambda) := \hat{x} = \arg \min_x L(x, \lambda)
\]

Reduced formulation: \[
\min_{\lambda \geq 0} U(x(\lambda)) =: \tilde{U}(\lambda)
\]
Bilevel learning: Reduced formulation

Upper level: \[
\min_{\lambda \geq 0, \hat{x}} U(\hat{x})
\]

Lower level: \[
x(\lambda) := \hat{x} = \arg\min_x L(x, \lambda) \iff \partial_x L(x(\lambda), \lambda) = 0
\]

Reduced formulation: \[
\min_{\lambda \geq 0} U(x(\lambda)) =: \tilde{U}(\lambda)
\]
Bilevel learning: Reduced formulation

<table>
<thead>
<tr>
<th>Upper level:</th>
<th>$\min_{\lambda \geq 0, \hat{x}} U(\hat{x})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower level:</td>
<td>$x(\lambda) := \hat{x} = \arg \min_x L(x, \lambda) \iff \partial_x L(x(\lambda), \lambda) = 0$</td>
</tr>
<tr>
<td>Reduced formulation:</td>
<td>$\min_{\lambda \geq 0} U(x(\lambda)) =: \tilde{U}(\lambda)$</td>
</tr>
</tbody>
</table>

$$0 = \partial^2_x L(x(\lambda), \lambda)x'(\lambda) + \partial_\lambda \partial_x L(x(\lambda), \lambda) \iff x'(\lambda) = -B^{-1}A$$
Bilevel learning: Reduced formulation

Upper level: \[
\min_{\lambda \geq 0, \hat{x}} U(\hat{x})
\]

Lower level: \[
x(\lambda) := \hat{x} = \arg\min_x L(x, \lambda) \quad \Leftrightarrow \quad \partial_x L(x(\lambda), \lambda) = 0
\]

Reduced formulation: \[
\min_{\lambda \geq 0} U(x(\lambda)) =: \tilde{U}(\lambda)
\]

\[
0 = \partial_x^2 L(x(\lambda), \lambda) x'(\lambda) + \partial_\lambda \partial_x L(x(\lambda), \lambda) \quad \Leftrightarrow \quad x'(\lambda) = -B^{-1}A
\]

\[
\nabla \tilde{U}(\lambda) = (x'(\lambda))^* \nabla U(x(\lambda))
\]
Bilevel learning: Reduced formulation

Upper level:
\[
\min_{\lambda \geq 0, \hat{x}} U(\hat{x})
\]

Lower level:
\[
x(\lambda) := \hat{x} = \arg \min_x L(x, \lambda) \iff \partial_x L(x(\lambda), \lambda) = 0
\]

Reduced formulation:
\[
\min_{\lambda \geq 0} U(x(\lambda)) =: \tilde{U}(\lambda)
\]

\[
0 = \partial_x^2 L(x(\lambda), \lambda)x'(\lambda) + \partial_\lambda \partial_x L(x(\lambda), \lambda) \iff x'(\lambda) = -B^{-1}A
\]

\[
\nabla \tilde{U}(\lambda) = (x'(\lambda))^* \nabla U(x(\lambda))
\]
\[
= -A^* B^{-1} \nabla U(x(\lambda)) = -A^* w
\]

where \(w\) solves \(Bw = \nabla U(x(\lambda))\).
Algorithm for Bilevel learning

<table>
<thead>
<tr>
<th>Upper level: (\min_{\lambda \geq 0, \hat{x}} U(\hat{x}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower level: (x(\lambda) := \arg \min_x L(x, \lambda))</td>
</tr>
<tr>
<td>Reduced formulation: (\min_{\lambda \geq 0} U(x(\lambda)) =: \tilde{U}(\lambda))</td>
</tr>
</tbody>
</table>

- Solve reduced formulation via L-BFGS-B [Nocedal and Wright 2000](#)
- Compute gradients: Given \(\lambda \)
 1. Compute \(x(\lambda) \), e.g. via PDHG [Chambolle and Pock 2011](#)
 2. Solve \(Bw = \nabla U(x(\lambda)), B := \partial^2_x L(x(\lambda), \lambda) \) e.g. via CG
 3. Compute \(\nabla \tilde{U}(\lambda) = -A^*w, A := \partial_\lambda \partial_x L(x(\lambda), \lambda) \)
Algorithm for Bilevel learning

Upper level: \(\min_{\lambda \geq 0, \hat{x}} U(\hat{x}) \)

Lower level: \(x(\lambda) := \arg \min_x L(x, \lambda) \)

Reduced formulation: \(\min_{\lambda \geq 0} U(x(\lambda)) =: \tilde{U}(\lambda) \)

- Solve reduced formulation via L-BFGS-B \cite{nocedal2000}.
- Compute gradients: Given \(\lambda \)
 1. Compute \(x(\lambda) \), e.g. via PDHG \cite{chambolle2011}.
 2. Solve \(Bw = \nabla U(x(\lambda)), B := \partial_x^2 L(x(\lambda), \lambda) \) e.g. via CG.
 3. Compute \(\nabla \tilde{U}(\lambda) = -A^* w, A := \partial_\lambda \partial_x L(x(\lambda), \lambda) \)

This approach has a number of problems:

- \(x(\lambda) \) has to be computed.
- Derivative assumes \(x(\lambda) \) is exact minimizer.
- Large system of linear equations has to be solved.
How to solve Bilevel Learning Problems?

- Most people: Ignore ”problems”, just compute it. e.g. Sherry et al. 2020
- Semi-smooth Newton: similar fundamental problems Kunisch and Pock 2013
- Replace lower level problem by finite number of iterations of algorithms: not bilevel anymore Ochs et al. 2015
How to solve Bilevel Learning Problems?

- Most people: Ignore "problems", just compute it. E.g. Sherry et al. 2020
- Semi-smooth Newton: similar fundamental problems Kunisch and Pock 2013
- Replace lower level problem by finite number of iterations of algorithms: not bilevel anymore Ochs et al. 2015

Use algorithm that acknowledges difficulties:
E.g. inexact DFO Ehrhardt and Roberts 2021
Dynamic Accuracy Derivative Free Optimization

\[
\min_{\theta} f(\theta)
\]

Key idea: Use \(f_\epsilon \):

\[
|f(\theta) - f_\epsilon(\theta)| < \epsilon
\]

Accuracy as low as possible, but as high as necessary.

E.g. if

\[
f_{\epsilon k+1}(\theta^{k+1}) < f_{\epsilon k}(\theta^{k}) - \epsilon^k - \epsilon^{k+1},
\]

then

\[
f(\theta^{k+1}) < f(\theta^{k})
\]
Dynamic Accuracy Derivative Free Optimization

$$\min_{\theta} f(\theta)$$

For $k = 0, 1, 2, \ldots$

1) Sample $f_{\epsilon k}$ in a neighbourhood of θ_k

2) Build model $m_k(\theta) \approx f_{\epsilon k}$

3) Minimise m_k around θ_k to get θ_{k+1}

4) If model decrease is sufficient compared to function error: accept step

Theorem Ehrhardt and Roberts 2021

If f is sufficiently smooth and bounded below, then the algorithm is globally convergent in the sense that

$$\lim_{k \to \infty} \| \nabla f(\theta_k) \| = 0.$$
1D Denoising Problem (learn α, ν and ξ) Ehrhardt and Roberts 2021

$$\min_{\theta} \left\{ \frac{1}{2} \sum_i \| x_i(\theta) - x_i \|^2_2 + \beta \left(\frac{L(\theta)}{\kappa(\theta)} \right)^2 \right\}$$

$$x_i(\theta) = \arg \min_x \frac{1}{2} \| x - y_i \|^2_2 + \alpha \left(\sum_j \sqrt{\| (\nabla x)_j \|^2_2 + \nu^2 + \frac{\xi}{2} \| x \|^2_2} \right)$$
1D Denoising Problem (learn α, ν and ξ)
Ehrhardt and Roberts 2021

$$\min_{\theta} \left\{ \frac{1}{2} \sum_i \| x_i(\theta) - x_i \|^2 + \beta \left(\frac{L(\theta)}{\kappa(\theta)} \right)^2 \right\}$$

$$x_i(\theta) = \arg \min_x \frac{1}{2} \| x - y_i \|^2 + \alpha \left(\sum_j \sqrt{\| (\nabla x)_j \|^2 + \nu^2 + \frac{\xi}{2} \| x \|^2} \right)$$

With more evaluations of $f(\theta)$, the parameter choices give better reconstructions:

Reconstruction of x_1 after N evaluations of $f(\theta)$
Dynamic accuracy is faster than “fixed accuracy” (at least 10^4 speedup):

Objective value $f(\theta)$ vs. computational effort
Always learns the same parameter for sufficient accuracy.

Robustness to initialization
Denoising Problem (learn α, ν and ξ) Ehrhardt and Roberts 2021

Bilevel learning is a convergent regularization?
Learn sampling pattern in MRI
Some important works on sampling for MRI

Uninformed
- Cartesian, radial, variable density … e.g. Lustig et al. 2007
 - ✔ simple to implement
 - ✗ not tailored to application or reconstruction method
- compressed sensing: random sampling e.g. Candes and Romberg 2007
 - ✔ mathematical guarantees
 - ✗ limited to sparse signals and sparsity promoting regularizers

Learned
- Largest Fourier coefficients of training set Knoll et al. 2011
 - ✔ simple to implement, computationally light
 - ✗ not tailored to reconstruction method
- greedy: iteratively select “best” sample e.g. Gözcü et al. 2018
 - ✔ adaptive to dataset, reconstruction method
 - ✔ only discrete values; computationally heavy
- Deep learning: e.g. specify sampling as continuous parameters in network Wang et al. 2021
 - ✔ realistic and easy to implement sampling patterns
 - ✗ end-to-end
 - ✗ limited to neural network reconstruction
Some important works on sampling for MRI

Uninformed
- Cartesian, radial, variable density ...
 e.g. Lustig et al. 2007
 - simple to implement
 - not tailored to application or reconstruction method
- compressed sensing: random sampling
 e.g. Candes and Romberg 2007
 - mathematical guarantees
 - limited to sparse signals and sparsity promoting regularizers

Learned
- **Largest Fourier coefficients** of training set
 Knoll et al. 2011
 - simple to implement, computationally light
 - not tailored to reconstruction method
- **greedy**: iteratively select ”best” sample
 e.g. Gözcü et al. 2018
 - adaptive to dataset, reconstruction method
 - only discrete values; computationally heavy
- **Deep learning**: e.g. specify sampling as continuous parameters in network
 Wang et al. 2021
 - realistic and easy to implement sampling patterns
 - end-to-end
 - limited to neural network reconstruction
Learn sampling pattern in MRI

Lower level (MRI reconstruction):

\[x_i(\lambda, s) = \arg\min_x \left\{ \sum_{j=1}^{N} s_j^2 |(Fx - y_i)_j|^2 + \lambda \mathcal{R}(x) \right\} \quad s_i \in \{0, 1\} \]

Sherry et al. 2020
Learn sampling pattern in MRI

Upper level (learning):
Given training data \((x_i^\dagger, y_i)_i^{n=1}\), solve

\[
\min_{\lambda \geq 0, s \in \{0, 1\}^m} \frac{1}{n} \sum_{i=1}^n \| x_i(\lambda, s) - x_i^\dagger \|_2^2
\]

Lower level (MRI reconstruction):

\[
x_i(\lambda, s) = \arg \min_x \left\{ \sum_{j=1}^N s_j^2 |(Fx - y_i)_j|^2 + \lambda R(x) \right\} \quad s_i \in \{0, 1\}
\]

Sherry et al. 2020
Learn sampling pattern in MRI

Upper level (learning):
Given **training data** \((x_i^\dagger, y_i)_{i=1}^n\), solve

\[
\min_{\lambda \geq 0, s \in \{0, 1\}^m} \frac{1}{n} \sum_{i=1}^n \| x_i(\lambda, s) - x_i^\dagger \|_2^2 + \beta_1 \sum_{j=1}^m s_j
\]

Lower level (MRI reconstruction):

\[
x_i(\lambda, s) = \arg \min_x \left\{ \sum_{j=1}^N s_j^2 |(F x - y_i)_j|^2 + \lambda \mathcal{R}(x) \right\} \quad s_i \in \{0, 1\}
\]

Sherry et al. 2020
Learn sampling pattern in MRI

Upper level (learning):
Given **training data** \((x_i^\dagger, y_i)_{i=1}^n\), solve

\[
\min_{\lambda \geq 0, s \in [0,1]^m} \frac{1}{n} \sum_{i=1}^n \|x_i(\lambda, s) - x_i^\dagger\|_2^2 + \beta_1 \sum_{j=1}^m s_j
\]

Lower level (MRI reconstruction):

\[
x_i(\lambda, s) = \arg \min \left\{ \sum_{j=1}^N s_j^2 |(Fx - y_i)_j|^2 + \lambda \mathcal{R}(x) \right\} \quad s_i \in [0, 1]
\]

Sherry et al. 2020
Learn sampling pattern in MRI

Upper level (learning):
Given **training data** \((x_i^\dagger, y_i)_{i=1}^n\), solve

\[
\min_{\lambda \geq 0, s \in [0,1]^m} \frac{1}{n} \sum_{i=1}^{n} \|x_i(\lambda, s) - x_i^\dagger\|_2^2 + \beta_1 \sum_{j=1}^{m} s_j + \beta_2 \sum_{j=1}^{m} s_j(1 - s_j)
\]

Lower level (MRI reconstruction):

\[
x_i(\lambda, s) = \arg \min_x \left\{ \sum_{j=1}^{N} s_j^2 |(Fx - y_i)_j|^2 + \lambda \mathcal{R}(x) \right\} \quad s_i \in [0, 1]
\]

Sherry et al. 2020
Warm up

Figure: Discrete 2d bump
(a) Original data: $\log |y|$
(b) Noisy data: $\log |\tilde{y}|$
(c) Learned sampling pattern
(d) Largest 2.76% Fourier Coefficients
Warm up

Figure: Discrete 2d bump

(a) Original data: $\log |y|$

(b) Noisy data: $\log |\hat{y}|$

(c) Learned sampling pattern

(d) Largest 2.76% Fourier Coefficients

(e) Learned sampling pattern

(f) Largest 2.76% Fourier Coefficients
Increasing sparsity Sherry et al. 2020

Reminder: **Upper level** (learning)

\[
\min_{\lambda \geq 0, s \in [0,1]^m} \frac{1}{n} \sum_{i=1}^{n} \|x_i(\lambda, s) - x_i^\dagger\|^2_2 + \beta_1 \sum_{j=1}^{m} s_j + \beta_2 \sum_{j=1}^{m} s_j(1 - s_j)
\]

\[\beta = \beta_1 = \beta_2\]
Compare regularizers Sherry et al. 2020
Compare Cartesian samplings

Sherry et al. 2020

$\text{"ours"} = \text{Sherry et al. 2020}$

$[23] = \text{Gözcü et al. 2018}$

$[2] = \text{Lustig et al. 2007}$

number of lower-level solves

regularizer = TV
More insights: sampling and number of data

Sherry et al. 2020
High resolution imaging: 1024^2 Sherry et al. 2020
Conclusions and Outlook

Conclusions

- **Bilevel learning**: supervised learning framework to learn parameters in variational regularization
- **Optimization** plays a key role in bilevel learning
 - **Dynamic accuracy**: no need to specify number of iterations
 - Improved algorithms *speed up* learning significantly
 - Make learning *surprisingly robust*
- **Learned sampling** better than generic sampling
 - ”Optimal” sampling *depends on regularizer*
 - *Very little data* needed
Conclusions and Outlook

Conclusions

- **Bilevel learning**: supervised learning framework to learn parameters in variational regularization
- **Optimization** plays a key role in bilevel learning
 - **Dynamic accuracy**: no need to specify number of iterations
 - Improved algorithms **speed up** learning significantly
 - Make learning **surprisingly robust**
- **Learned sampling** better than generic sampling
 - ”Optimal” sampling **depends on regularizer**
 - Very little data needed

Future work

- **Stochastic** algorithms (like stochastic gradient descent etc)
- **Nonsmooth** or **nonconvex** lower-level problems
- **Inexact gradient** methods
- **Neural network** regularization