
Equivariant Neural Networks
for Inverse Problems

Matthias J. Ehrhardt

Department of Mathematical Sciences, University of Bath, UK

July 29, 2021

Joint work with:
F. Sherry, C. Etmann, C.-B. Schönlieb (all Cambridge, UK),
E. Celledoni, B. Owren (both NTNU, Norway)



Outline

1) Inverse Problems
and Machine Learning

minx
1
2‖Ax − y‖22 +λR(x)

2) Equivariance
and Neural Networks

3) Numerical Results
for CT and MRI

0.967
31.0

0.970
32.6

0.953
30.3

0.969
31.9

0.955
30.2

0.970
31.9

0.948
30.1

0.953
31.4

Ground truth

Equivariant

Ordinary

Celledoni et al., Equivariant neural networks for inverse problems,

to appear in Inverse Problems, 2021



Inverse Problems and Machine Learning



Inverse problems

Au = b
u : desired solution

b : observed data

A : mathematical model

Goal: recover u given b

I Radon / X-ray transform (e.g. CT, PET) Au(L) =
∫
L u(x)dx

→



Inverse problems

Au = b
u : desired solution

b : observed data

A : mathematical model

Goal: recover u given b
I Radon / X-ray transform (e.g. CT, PET) Au(L) =

∫
L u(x)dx

→



Inverse problems

Au = b
u : desired solution

b : observed data

A : mathematical model

Goal: recover u given b
I Fourier transform (e.g. MRI) Au(k) =

∫
u(x) exp(−ikx)dx

→



What is the problem with inverse problems?

I Au(L) =
∫
L u(x)dx

→

Hadamard (1902): We call an inverse problem
Au = b well-posed if

(1) a solution u∗ exists

(2) the solution u∗ is unique

(3) u∗ depends continuously on data b.

Otherwise, it is called ill-posed. Jacques Hadamard

Most interesting problems are ill-posed.



What is the problem with inverse problems?

I Au(L) =
∫
L u(x)dx

→

Hadamard (1902): We call an inverse problem
Au = b well-posed if

(1) a solution u∗ exists

(2) the solution u∗ is unique

(3) u∗ depends continuously on data b.

Otherwise, it is called ill-posed. Jacques Hadamard

Most interesting problems are ill-posed.



How to solve inverse problems?

Variational regularization
Approximate a solution u∗ of Au = b via

û ∈ arg min
u

{
D(u) + λR(u)

}

D measures fidelity between Au and b, related to noise statistics

R regularizer penalizes unwanted features and ensures stability

λ ≥ 0 regularization parameter balances fidelity and regularization

Scherzer et al. 2008, Ito and Jin 2015, Benning and Burger 2018



How to solve inverse problems?
Variational regularization
Approximate a solution u∗ of Au = b via

û ∈ arg min
u

{
D(u) + λR(u)

}

I squared L2 norm: R(u) = 1
2‖u‖22

I squared H1 semi-norm: R(u) = 1
2‖∇u‖22

I Total Variation R(u) = ‖∇u‖1 Rudin, Osher, Fatemi 1992

I Total Generalized Variation
R(u) = infv ‖∇u − v‖1 + β‖∇v‖1 Bredies, Kunisch, Pock 2010



How to ACTUALLY solve inverse problems?

û ∈ arg min
u

{
D(u) + λR(u)

}

Forward-Backward Splitting Beck and Teboulle 2009

uk+1 = proxτkλR(uk − τk∇D(uk))

Solution Φ(b) := limk→∞ uk .
Choose τk , λ: Φ(b) = û → u∗ if λ→ 0

Proximal operator Moreau 1962

proxf (z) := arg min
u

1

2
‖u − z‖2 + f (u)

Learned gradient descent Adler and Öktem 2017

uk+1 = p̂roxi (u
k ,∇D(uk))

Solution Φ(b) := uK , ”small” K ∈ N.
Learn p̂roxi : Φ(b) ≈ u∗



How to ACTUALLY solve inverse problems?

û ∈ arg min
u

{
D(u) + λR(u)

}

Forward-Backward Splitting Beck and Teboulle 2009

uk+1 = proxτkλR(uk − τk∇D(uk))

Solution Φ(b) := limk→∞ uk .
Choose τk , λ: Φ(b) = û → u∗ if λ→ 0

Proximal operator Moreau 1962

proxf (z) := arg min
u

1

2
‖u − z‖2 + f (u)

Learned gradient descent Adler and Öktem 2017

uk+1 = p̂roxi (u
k ,∇D(uk))

Solution Φ(b) := uK , ”small” K ∈ N.
Learn p̂roxi : Φ(b) ≈ u∗



Learned proximal gradient descent with memory

I memory s

∇Ey

p̂roxi

ui

y

si

ui+1

si+1



Equivariance and Neural Networks



What happens when data is rotated?

Φ(b) = u

Training data

Clean Noisy Ordinary Equivariant

Clean Noisy Ordinary Equivariant

Horizontal training example

Vertical testing example

Test data

Clean Noisy Ordinary Equivariant

Clean Noisy Ordinary Equivariant

Horizontal training example

Vertical testing example



What happens when data is rotated?

Φ(b) = u
Training data

Clean Noisy Ordinary Equivariant

Clean Noisy Ordinary Equivariant

Horizontal training example

Vertical testing example

Test data

Clean Noisy Ordinary Equivariant

Clean Noisy Ordinary Equivariant

Horizontal training example

Vertical testing example



What happens when data is rotated?

Φ(b) = u
Training data

Clean Noisy Ordinary Equivariant

Clean Noisy Ordinary Equivariant

Horizontal training example

Vertical testing example

Test data

Clean Noisy Ordinary Equivariant

Clean Noisy Ordinary Equivariant

Horizontal training example

Vertical testing example



How to get ”equivariant” mappings?
Example: Rθ rotation by θ, Φ denoising network

Φ(Rθb) = RθΦ(b)

I data augmentation: e.g. (bi , ui )i becomes (Rθbi ,Rθui )i ,θ
3 simple to implement for image-based tasks (e.g. denoising,

image segmentation etc)

7 potentially computationally costly since training data is
larger

7 no guarantees this will translate to test data
7 not always easy/possible (for inverse problems only viable in

simulations or if data is not paired (semi-supervised training))
I equivariance by design (this talk!)

3 mathematical guarantees
7 not trivial to do

Equivariant neural networks have been studied a lot for
segmentation, classification, denoising etc Bekkers et al. 2018,

Weiler and Cesa 2019, Cohen and Welling 2016, Dieleman et al. 2016, Sosnovik

et al. 2019, Worall and Welling 2019, ...



How to get ”equivariant” mappings?
Example: Rθ rotation by θ, Φ denoising network

Φ(Rθb) = RθΦ(b)
I data augmentation: e.g. (bi , ui )i becomes (Rθbi ,Rθui )i ,θ

3 simple to implement for image-based tasks (e.g. denoising,
image segmentation etc)

7 potentially computationally costly since training data is
larger

7 no guarantees this will translate to test data
7 not always easy/possible (for inverse problems only viable in

simulations or if data is not paired (semi-supervised training))

I equivariance by design (this talk!)

3 mathematical guarantees
7 not trivial to do

Equivariant neural networks have been studied a lot for
segmentation, classification, denoising etc Bekkers et al. 2018,

Weiler and Cesa 2019, Cohen and Welling 2016, Dieleman et al. 2016, Sosnovik

et al. 2019, Worall and Welling 2019, ...



How to get ”equivariant” mappings?
Example: Rθ rotation by θ, Φ denoising network

Φ(Rθb) = RθΦ(b)
I data augmentation: e.g. (bi , ui )i becomes (Rθbi ,Rθui )i ,θ

3 simple to implement for image-based tasks (e.g. denoising,
image segmentation etc)

7 potentially computationally costly since training data is
larger

7 no guarantees this will translate to test data
7 not always easy/possible (for inverse problems only viable in

simulations or if data is not paired (semi-supervised training))
I equivariance by design (this talk!)

3 mathematical guarantees
7 not trivial to do

Equivariant neural networks have been studied a lot for
segmentation, classification, denoising etc Bekkers et al. 2018,

Weiler and Cesa 2019, Cohen and Welling 2016, Dieleman et al. 2016, Sosnovik

et al. 2019, Worall and Welling 2019, ...



What is equivariance?

Definition (Group G)

• associativity: ∀g1, g2, g3 ∈ G : (g1 · g2) · g3 = g1 · (g2 · g3),

• identity: ∃e ∈ G ∀g ∈ G : e · g = g

• invertibility: ∀g ∈ G ∃g−1 ∈ G : g−1 · g = e

Definition (G acts on X )

• group action: G × X → X , (g , x) 7→ g · x
• identity: e · x = x

• compatibility: g1 · (g2 · x) = (g1 · g2) · x

Definition (Equivariance) G acts on X and Y , Φ : X → Y is
called equivariant if for all g ∈ G , x ∈ X

g · Φ(x) = Φ(g · x)



What is equivariance?

Definition (Group G)

• associativity: ∀g1, g2, g3 ∈ G : (g1 · g2) · g3 = g1 · (g2 · g3),

• identity: ∃e ∈ G ∀g ∈ G : e · g = g

• invertibility: ∀g ∈ G ∃g−1 ∈ G : g−1 · g = e

Definition (G acts on X )

• group action: G × X → X , (g , x) 7→ g · x
• identity: e · x = x

• compatibility: g1 · (g2 · x) = (g1 · g2) · x

Definition (Equivariance) G acts on X and Y , Φ : X → Y is
called equivariant if for all g ∈ G , x ∈ X

g · Φ(x) = Φ(g · x)



What is equivariance?

Definition (Group G)

• associativity: ∀g1, g2, g3 ∈ G : (g1 · g2) · g3 = g1 · (g2 · g3),

• identity: ∃e ∈ G ∀g ∈ G : e · g = g

• invertibility: ∀g ∈ G ∃g−1 ∈ G : g−1 · g = e

Definition (G acts on X )

• group action: G × X → X , (g , x) 7→ g · x
• identity: e · x = x

• compatibility: g1 · (g2 · x) = (g1 · g2) · x

Definition (Equivariance) G acts on X and Y , Φ : X → Y is
called equivariant if for all g ∈ G , x ∈ X

g · Φ(x) = Φ(g · x)



Group actions on functions, e.g. X = L2(Rn,Rm)

domain: (g · u)(x) = u(g−1 · x)

translations, rotations, affine transformations

Example: G = (Rn,+) may act on X via

I (g · u)(x) = u(x − g)

I (g · u)(x) = u(x exp(g)), if n = 1

range: (g · u)(x) = g · u(x)

Example: G = (Rm,+) may act on X via

I (g · u)(x) = u(x) + g

both domain and range: (g · u)(x) = g · u(g−1 · x)



Group actions on functions, e.g. X = L2(Rn,Rm)

domain: (g · u)(x) = u(g−1 · x)

translations, rotations, affine transformations

Example: G = (Rn,+) may act on X via

I (g · u)(x) = u(x − g)

I (g · u)(x) = u(x exp(g)), if n = 1

range: (g · u)(x) = g · u(x)

Example: G = (Rm,+) may act on X via

I (g · u)(x) = u(x) + g

both domain and range: (g · u)(x) = g · u(g−1 · x)



Group actions on functions, e.g. X = L2(Rn,Rm)

domain: (g · u)(x) = u(g−1 · x)

translations, rotations, affine transformations

Example: G = (Rn,+) may act on X via

I (g · u)(x) = u(x − g)

I (g · u)(x) = u(x exp(g)), if n = 1

range: (g · u)(x) = g · u(x)

Example: G = (Rm,+) may act on X via

I (g · u)(x) = u(x) + g

both domain and range: (g · u)(x) = g · u(g−1 · x)



Acting on domain and range: (g · u)(x) = g · u(g−1 · x)

I G = Rn o H, H subgroup of the general linear group GL(n)

I g · x = Rx + t, g = (t,R) ∈ G , t ∈ Rn,R ∈ H

I π : H → GL(m) representation of H

I (g · u)(x) = π(R)u(R−1(x − t))

Examples
I Translations: H = {e}
I Roto-Translations: H = SO(n)
I Finite Roto-Translations H = ZM (finite subgroup of SO(2))

I Example: u vector-field, move and transform vectors

Weiler and Cesa 2019



Acting on domain and range: (g · u)(x) = g · u(g−1 · x)
I G = Rn o H, H subgroup of the general linear group GL(n)

I g · x = Rx + t, g = (t,R) ∈ G , t ∈ Rn,R ∈ H

I π : H → GL(m) representation of H

I (g · u)(x) = π(R)u(R−1(x − t))

Examples
I Translations: H = {e}
I Roto-Translations: H = SO(n)
I Finite Roto-Translations H = ZM (finite subgroup of SO(2))

I Example: u vector-field, move and transform vectors

Weiler and Cesa 2019



Acting on domain and range: (g · u)(x) = g · u(g−1 · x)
I G = Rn o H, H subgroup of the general linear group GL(n)

I g · x = Rx + t, g = (t,R) ∈ G , t ∈ Rn,R ∈ H

I π : H → GL(m) representation of H

I (g · u)(x) = π(R)u(R−1(x − t))

Examples
I Translations: H = {e}
I Roto-Translations: H = SO(n)
I Finite Roto-Translations H = ZM (finite subgroup of SO(2))

I Example: u vector-field, move and transform vectors

Weiler and Cesa 2019



Acting on domain and range: (g · u)(x) = g · u(g−1 · x)
I G = Rn o H, H subgroup of the general linear group GL(n)

I g · x = Rx + t, g = (t,R) ∈ G , t ∈ Rn,R ∈ H

I π : H → GL(m) representation of H

I (g · u)(x) = π(R)u(R−1(x − t))

Examples
I Translations: H = {e}
I Roto-Translations: H = SO(n)
I Finite Roto-Translations H = ZM (finite subgroup of SO(2))

I Example: u vector-field, move and transform vectors

Weiler and Cesa 2019



How to get ”equivariant” networks?
Proposition Let G be any group.

I The composition Φ ◦Ψ is equivariant if Φ and Ψ are
equivariant.

I The sum Φ + Ψ is equivariant if Φ and Ψ are equivariant.

I The identity Φ(u) = u is equivariant.

Outlook (linearity) There are non-trivial G -equivariant linear
operators.

Proposition (bias) Let Φ : X → X , (Φu)(x) = u(x) + b(x). For
any group G , Φ is equivariant if b is invariant, i.e. g · b = b.

Outlook (nonlinearity) There are G -equivariant nonlinearities.

We can construct G -equivariant neural networks in the usual way:
I layers Φ = Φn ◦ · · · ◦ Φ1

I Φ(u) = σ(Au + b)
I ResNet Φ(u) = u + σ(Au + b)



How to get ”equivariant” networks?
Proposition Let G be any group.

I The composition Φ ◦Ψ is equivariant if Φ and Ψ are
equivariant.

I The sum Φ + Ψ is equivariant if Φ and Ψ are equivariant.

I The identity Φ(u) = u is equivariant.

Outlook (linearity) There are non-trivial G -equivariant linear
operators.

Proposition (bias) Let Φ : X → X , (Φu)(x) = u(x) + b(x). For
any group G , Φ is equivariant if b is invariant, i.e. g · b = b.

Outlook (nonlinearity) There are G -equivariant nonlinearities.

We can construct G -equivariant neural networks in the usual way:
I layers Φ = Φn ◦ · · · ◦ Φ1

I Φ(u) = σ(Au + b)
I ResNet Φ(u) = u + σ(Au + b)



How to get ”equivariant” networks?
Proposition Let G be any group.

I The composition Φ ◦Ψ is equivariant if Φ and Ψ are
equivariant.

I The sum Φ + Ψ is equivariant if Φ and Ψ are equivariant.

I The identity Φ(u) = u is equivariant.

Outlook (linearity) There are non-trivial G -equivariant linear
operators.

Proposition (bias) Let Φ : X → X , (Φu)(x) = u(x) + b(x). For
any group G , Φ is equivariant if b is invariant, i.e. g · b = b.

Outlook (nonlinearity) There are G -equivariant nonlinearities.

We can construct G -equivariant neural networks in the usual way:
I layers Φ = Φn ◦ · · · ◦ Φ1

I Φ(u) = σ(Au + b)
I ResNet Φ(u) = u + σ(Au + b)



How to get ”equivariant” networks?
Proposition Let G be any group.

I The composition Φ ◦Ψ is equivariant if Φ and Ψ are
equivariant.

I The sum Φ + Ψ is equivariant if Φ and Ψ are equivariant.

I The identity Φ(u) = u is equivariant.

Outlook (linearity) There are non-trivial G -equivariant linear
operators.

Proposition (bias) Let Φ : X → X , (Φu)(x) = u(x) + b(x). For
any group G , Φ is equivariant if b is invariant, i.e. g · b = b.

Outlook (nonlinearity) There are G -equivariant nonlinearities.

We can construct G -equivariant neural networks in the usual way:
I layers Φ = Φn ◦ · · · ◦ Φ1

I Φ(u) = σ(Au + b)
I ResNet Φ(u) = u + σ(Au + b)



How to get ”equivariant” networks?
Proposition Let G be any group.

I The composition Φ ◦Ψ is equivariant if Φ and Ψ are
equivariant.

I The sum Φ + Ψ is equivariant if Φ and Ψ are equivariant.

I The identity Φ(u) = u is equivariant.

Outlook (linearity) There are non-trivial G -equivariant linear
operators.

Proposition (bias) Let Φ : X → X , (Φu)(x) = u(x) + b(x). For
any group G , Φ is equivariant if b is invariant, i.e. g · b = b.

Outlook (nonlinearity) There are G -equivariant nonlinearities.

We can construct G -equivariant neural networks in the usual way:
I layers Φ = Φn ◦ · · · ◦ Φ1

I Φ(u) = σ(Au + b)
I ResNet Φ(u) = u + σ(Au + b)



Equivariant linear functions (πX ≡ id)

In a nutshell: Linear G -equivariant operators are convolutions
with a kernel satisfying an additional constraint.

Theorem paraphrasing e.g. Weiler and Cesa 2019

Let X ,Y be function spaces, e.g. X = L2(Rn,Rm),
Y = L2(Rn,RM). The linear operator Φ : X → Y ,

Φf (x) =

∫
K (x , y)f (y)dy

with K : Rn → RM×m is G -equivariant iff there is a k such that

Φf (x) =

∫
k(x − y)f (y)dy

and k is H-invariant, i.e. for all R ∈ H, x ∈ Rn: k(Rx) = k(x).



Equivariant linear functions (πX ≡ id)

In a nutshell: Linear G -equivariant operators are convolutions
with a kernel satisfying an additional constraint.

Theorem paraphrasing e.g. Weiler and Cesa 2019

Let X ,Y be function spaces, e.g. X = L2(Rn,Rm),
Y = L2(Rn,RM). The linear operator Φ : X → Y ,

Φf (x) =

∫
K (x , y)f (y)dy

with K : Rn → RM×m is G -equivariant iff there is a k such that

Φf (x) =

∫
k(x − y)f (y)dy

and k is H-invariant, i.e. for all R ∈ H, x ∈ Rn: k(Rx) = k(x).



Equivariant nonlinearities (πX ≡ id)

In a nutshell: There are G -equivariant nonlinearities.

Let ψ : R→ R be any non-linear function.

I Norm nonlinearity ΨN : X → X ,

[ΨN(u)](x) = u(x) · ψ(‖u(x)‖)

I Pointwise and componentwise nonlinearity ΨP : X → X ,

[ΨP(u)](x) = ~ψ(u(x)), ~ψ(x)i = ψ(xi )

Lemma Both nonlinearities are G -equivariant.



Equivariant nonlinearities (πX ≡ id)

In a nutshell: There are G -equivariant nonlinearities.

Let ψ : R→ R be any non-linear function.

I Norm nonlinearity ΨN : X → X ,

[ΨN(u)](x) = u(x) · ψ(‖u(x)‖)

I Pointwise and componentwise nonlinearity ΨP : X → X ,

[ΨP(u)](x) = ~ψ(u(x)), ~ψ(x)i = ψ(xi )

Lemma Both nonlinearities are G -equivariant.



Equivariant nonlinearities (πX ≡ id)

In a nutshell: There are G -equivariant nonlinearities.

Let ψ : R→ R be any non-linear function.

I Norm nonlinearity ΨN : X → X ,

[ΨN(u)](x) = u(x) · ψ(‖u(x)‖)

I Pointwise and componentwise nonlinearity ΨP : X → X ,

[ΨP(u)](x) = ~ψ(u(x)), ~ψ(x)i = ψ(xi )

Lemma Both nonlinearities are G -equivariant.



Equivariance and inverse problems
I inverse problem Au = b, solution operator: Φ : Y → X
I Hope Φ ◦ A is equivariant, e.g. Rθ ◦ Φ ◦ A = Φ ◦ A ◦ Rθ

I Even if J is invariant, Φ ◦ A is not generally equivariant
I Example: TV and inpainting

R

A

A

Φ

Φ

R

6=

What about well-behaved kernel: compressed sensing?



Equivariance and inverse problems
I inverse problem Au = b, solution operator: Φ : Y → X
I Hope Φ ◦ A is equivariant, e.g. Rθ ◦ Φ ◦ A = Φ ◦ A ◦ Rθ
I Even if J is invariant, Φ ◦ A is not generally equivariant
I Example: TV and inpainting

R

A

A

Φ

Φ

R

6=

What about well-behaved kernel: compressed sensing?



Equivariance and inverse problems
I inverse problem Au = b, solution operator: Φ : Y → X
I Hope Φ ◦ A is equivariant, e.g. Rθ ◦ Φ ◦ A = Φ ◦ A ◦ Rθ
I Even if J is invariant, Φ ◦ A is not generally equivariant
I Example: TV and inpainting

R

A

A

Φ

Φ

R

6=

What about well-behaved kernel: compressed sensing?



Invariant functional implies equivariant proximal operator

Theorem Celledoni et al. 2021

I G acts isometrically on X (‖g · u‖ = ‖u‖)
I J : X → R ∪ {+∞} is invariant (J(g · u) = J(u))

I J has well-defined single-valued proximal operator

Then proxJ is equivariant, i.e for all u ∈ X and g ∈ G

proxJ(g · u) = g · proxJ(u).

I Proof does generalize to variatial regularization with
L2-datafit if A is equivariant

I For example the total variation (and higher order variants) is
invariant to rigid motion



Invariant functional implies equivariant proximal operator

Theorem Celledoni et al. 2021

I G acts isometrically on X (‖g · u‖ = ‖u‖)
I J : X → R ∪ {+∞} is invariant (J(g · u) = J(u))

I J has well-defined single-valued proximal operator

Then proxJ is equivariant, i.e for all u ∈ X and g ∈ G

proxJ(g · u) = g · proxJ(u).

I Proof does generalize to variatial regularization with
L2-datafit if A is equivariant

I For example the total variation (and higher order variants) is
invariant to rigid motion



Numerical Results



Datasets
I CT: LIDC-IDRI data set, 5000+200+1000 images, 50 views

u FBP(y)u FBP(y)

I MR: FastMRI data set, 5000+200+1000 images

S u F−1(S∗y) u F−1(S∗y)



CT Results
Equivariant = roto-translations; Ordinary = translations

Equivariant improves upon Ordinary:
I higher SSIM and PSNR
I fewer artefacts and finer details

Ordinary Equivariant Ground truth
0.967
31.0

0.970
32.6

0.953
30.3

0.969
31.9

0.955
30.2

0.970
31.9

0.948
30.1

0.953
31.4

Ground truth

Equivariant

Ordinary

0.967
31.0

0.970
32.6

0.953
30.3

0.969
31.9

0.955
30.2

0.970
31.9

0.948
30.1

0.953
31.4

Ground truth

Equivariant

Ordinary

0.967
31.0

0.970
32.6

0.953
30.3

0.969
31.9

0.955
30.2

0.970
31.9

0.948
30.1

0.953
31.4

Ground truth

Equivariant

Ordinary

0.967
31.0

0.970
32.6

0.953
30.3

0.969
31.9

0.955
30.2

0.970
31.9

0.948
30.1

0.953
31.4

Ground truth

Equivariant

Ordinary

0.967
31.0

0.970
32.6

0.953
30.3

0.969
31.9

0.955
30.2

0.970
31.9

0.948
30.1

0.953
31.4

Ground truth

Equivariant

Ordinary

0.967
31.0

0.970
32.6

0.953
30.3

0.969
31.9

0.955
30.2

0.970
31.9

0.948
30.1

0.953
31.4

Ground truth

Equivariant

Ordinary

0.967
31.0

0.970
32.6

0.953
30.3

0.969
31.9

0.955
30.2

0.970
31.9

0.948
30.1

0.953
31.4

Ground truth

Equivariant

Ordinary

0.967
31.0

0.970
32.6

0.953
30.3

0.969
31.9

0.955
30.2

0.970
31.9

0.948
30.1

0.953
31.4

Ground truth

Equivariant

Ordinary



CT Results
Equivariant = roto-translations; Ordinary = translations

Equivariant improves upon Ordinary:
I small training sets
I unseen orientations

10 100 1000
Training set size N

24

26

28

30

32

34

36

P
S

N
R

Upright test images

Equivariant

Ordinary

10 100 1000
Training set size N

24

26

28

30

32

34

36

P
S

N
R

Rotated test images

Equivariant

Ordinary

Generalisation performance of the learned methods



MR Results

I similar observations in MR (as in CT); smaller difference

I results for both methods better on rotated images

10 100 1000
Training set size N

24

26

28

30

32

34

P
S

N
R

Upright test images

Equivariant

Ordinary

10 100 1000
Training set size N

24

26

28

30

32

34

P
S

N
R

Rotated test images

Equivariant

Ordinary

Generalisation performance of the learned methods



MR Results: Smoothing

I smoothing helps: easier to train on smoother images

10 100 1000
Training set size N

24

26

28

30

32

34

P
S

N
R

Equivariant

Unaltered

Rotated

10 100 1000
Training set size N

24

26

28

30

32

34

P
S

N
R

Ordinary

Unaltered

Rotated

Performance of the learned methods on upright images



Conclusions and Outlook
Conclusions

I no need for data augmentation: mathematically
guaranteed equivariant neural networks exist (though some
extra work is needed)

I solution operators may not be equivariant, but proximal
operators usually are equivariant

I computationally efficient: as convolutional networks at run
time

I useful for many applications: fewer data and robustness

Future work

I other groups, e.g. scaling of itensities

I other inverse problems, e.g. compressed sensing or trivial
kernel

I higher dimensions e.g. 3D or dynamic inverse problems



Conclusions and Outlook
Conclusions

I no need for data augmentation: mathematically
guaranteed equivariant neural networks exist (though some
extra work is needed)

I solution operators may not be equivariant, but proximal
operators usually are equivariant

I computationally efficient: as convolutional networks at run
time

I useful for many applications: fewer data and robustness

Future work

I other groups, e.g. scaling of itensities

I other inverse problems, e.g. compressed sensing or trivial
kernel

I higher dimensions e.g. 3D or dynamic inverse problems


