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Main Messages of This Talk

I Concepts from numerical analysis offer insight in the
structure of deep learning (optimal control, numerical
differential equations, constrained optimisation, . . . ).

I Imposing structure from numerical approaches can help to
design neural networks with solution guarantees (stability,
invertibility, equivariance, manifold structure, . . . ).

I Many open problems and interesting opportunities for
mathematicians.



Outline

I Neural networks inspired by differential equations

I Equivariant neural networks

I Invertible neural networks and normalising flows

I Deep Learning meets optimal control

I Structure-exploiting learning
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Notation: Neural Network
Define neural network Φθ : X → Y recursively: Φθ(x) = zK

z0 = x ∈ X

zk+1 = f k(zk , θk), k = 0, . . . ,K − 1

with generic layers

f k : Z k ×Θk → Z k+1, k = 0, . . . ,K − 1

I Classical, fully-connected layer defined by

f : RM × (RM′×M × RM′
)→ RM′

(z , (A, b)) 7→ σ(Az + b),

where σ is an element-wise nonlinearity (ReLU, tanh etc.)
I A is often replaced by a convolutional operator
I Training goal: dataset {(xn, yn)}n

min
θ∈Θ

1

N

N∑
n=1

L(Φθ(xn), yn) + R(θ)



Deep Learning and Robustness
I Deep learning often is not robust (e.g. noise, rotations, ...)

https://ai.googleblog.com/2018/09/introducing-unrestricted-adversarial.html

I Data augmentation ...

I This talk: Design deep learning architectures with
mathematical guarantees (e.g. stability, equivariance, ...)

https://ai.googleblog.com/2018/09/introducing-unrestricted-adversarial.html


Neural networks inspired by
differential equations



Residual networks as discretised ODEs

I “Standard” Neural Networks

zk+1 = σ(Akzk + bk)

I Deep Residual Neural Networks
(ResNet) He, Zhang, Ren, Sun 2015

(> 85000 citations on GoogleScholar)

zk+1 = zk + ∆t σ(Akzk + bk)

ResNet is Forward Euler discretization ż(t) ≈ z(t+∆t)−z(t)
∆t of

ż(t) = σ(A(t)z(t) + b(t)), t ∈ [0,T ]

with continuous-time mappings A, b. zk := z(k∆t) ...

Haber and Ruthotto 2018, Li et al. 2018, Benning et al. 2019, ...



ResNet in action



Interpretation as discrete optimal control
The deep learning problem can be seen as the discretization of

Optimal control problem

min
θ

1

N

N∑
n=1

L(zn(T ), yn)

subject to
żn = f (zn, θ), zn(0) = xn ∈ X .

Why is the optimal control point of view useful:
I it states the deep learning problem in two lines
I can be used to create new architectures
I continuous models are useful simplifications of reality,

amenable for analysis
I what ODE properties carry over to discrete neural networks?

Haber and Ruthotto 2017; Li, Chen, Tai, E 2018



Notions of Stability - What makes sense?

Notions of ODE stability:

I Stability of equilibrium points (e.g. Lyapunov/asymptotic stability
of autonomous systems)

I How does z(t) change if initial value x = z(0) changes?

I Statements for all t ∈ [0,∞) or just t ∈ [0,T ]?

Notions of NN stability:

I (Uniform) continuity of output w.r.t. input of network: “Always”
fulfilled with standard architectures but constants can be arbitrary
large

I Enforcing a specific e.g. Lipschitz constant, i.e. “Train this
architecture and a certain stability is guaranteed”.



ODE Stability 1
Theorem (very old): The autonomous ODE ż = f (z) is
asymptotically stable if the real parts of the eigenvalues of the
Jacobian Df are non-positive.

Corollary: Let σ̇ ≥ 0. Then forward propagation is
asymptotically stable if Re(λ(A)) ≤ 0.

I Examples. σ(y) = y , b = 0

A+ =

(
2 −2
0 2

)
, A− =

(
−2 0
2 −2

)
, A0 =

(
0 −1
1 0

)
λ(A+) = (2, 2), λ(A−) = (−2,−2), λ(A0) = (i ,−i)

Haber and Ruthotto 2018



New Unconditionally Stable Architectures

I ResNet with antisymmetric
transformation matrix

ż = σ
(

(A− AT )z + b
)

I Hamiltonian inspired Network:
ResNet with auxiliary variable
and antisymmetric matrix(

ż
ẇ

)
= σ

((
0 A
−AT 0

)(
z
w

)
+ b

)
z(0) = z0, w(0) = 0

Haber and Ruthotto 2018

Problem: this statement is only true for autonomous systems!
If the vector-field f depends on time, then similar statements are

true but the theory is rather weak.



ODE stability 2
Consider Φ(z) = z(T ) with z solving ż(t) = ft(z(t)), t ∈ [0,T ]

Definition We call a neural network Φ stable if there exists
C > 0 such that for all u, v we have

‖Φ(u)− Φ(v)‖ ≤ C‖u − v‖.

I With Lipschitz continuity of ft :
e.g. ft(u) = σ(A(t)u + b(t)) with σ being S-Lipschitz and A continuous

C = exp(T · L)

(
= exp(T · S max

t∈[0,T ]
‖A(t)‖)

)
I With “one-sided” Lipschitz continuity of ft :

〈ft(u)− ft(v), u − v〉 ≤ ν‖u − v‖2, ν ∈ R

If f is L-Lipschitz, then f is “one-sided” Lipschitz with ν = L

C = exp(T · ν)

Celledoni et al. 2021, Zhang and Schaeffer 2020



Sufficient Conditions for Stability
Recall, “one-sided” Lipschitz continuity of ft

〈ft(u)− ft(v), u − v〉 ≤ ν‖u − v‖2 (OL)

Theorem Celledoni et al. 2021

I Let Vt be twice differentiable and convex. Then
ft(u) = −∇Vt(u) satisfies (OL) for some ν ≤ 0.

I Let 0 ≤ σ′ ≤ 1 almost everywhere. Then

ft(u) = −A(t)∗σ(A(t)u + b(t))

satisfies (OL) with −µ2
∗ ≤ ν ≤ 0 where µ∗ := inft µ(t) and

µ(t) is the smallest singular value of A(t).

I Note that this does not require smoothness in time of A and b
I Discretized systems (e.g. Runge-Kutta methods)

“Circle contractivity” Dahlquist 1979

〈ft(u)− ft(v), u − v〉 ≤ ν‖ft(u)− ft(v)‖2



Examples: Different Runge–Kutta methods



Examples: Learn time steps

zk+1 = zk + ∆tkσ(Akzk + bk)

I ResNet: Choose ∆tk = T/K
I ODENet: Estimate (∆tk ,Ak , bk)
I Simplex constraint: ∆tk ≥ 0,

∑
k ∆tk = T



Examples: Learn time steps

zk+1 = zk + ∆tkσ(Akzk + bk)
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∑
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Equivariant neural networks



What happens when images are rotated?

Φ(y) = x
Training data

Clean Noisy Ordinary Equivariant

Clean Noisy Ordinary Equivariant

Horizontal training example

Vertical testing example

Test data

Clean Noisy Ordinary Equivariant

Clean Noisy Ordinary Equivariant

Horizontal training example

Vertical testing example



Equivariance and Invariance

Definition: Group G “acts” on spaces X and Y denoted by
gX ◦ u and gY ◦ v . We call Φ : X → Y G -equivariant if for all
g ∈ G , u ∈ X

Φ(gX ◦ u) = gY ◦ Φ(u).

If Φ is G -equivariant and G acts trivially on Y , then we call Φ
G -invariant, i.e. for all u ∈ X and g ∈ G Φ(gX ◦ u) = Φ(u) .

Examples of interesting groups:

I translations

I rotations

I scaling

I roto-translations G : gX = (R, t)
(gX ◦ u)(x) = πX (R)u(R−1x + t)

Equivariant neural networks have been studied a lot for
segmentation, classification, denoising etc
Cohen and Welling ’16, Dieleman et al. ’16, Worall et al. ’17, Bekkers et al. ’18,

Weiler and Cesa ’19, Sosnovik et al. ’19, Worall and Welling ’19, Cohen et al. ’19 ...



How to get Equivariant Networks?

Proposition The following are equivariant:

I the composition of equivariant operators

I the sum of equivariant operators

I the identity operator

Proposition (linearity) There are non-trivial G -equivariant
linear operators.

Proposition (bias) Let Φ : X → X , (Φu)(x) = u(x) + b(x). For
any group G , Φ is equivariant if b is invariant, i.e. g · b = b.

Proposition (nonlinearity) There are G -equivariant
nonlinearities.

We can construct G -equivariant neural networks in the usual way:
I layers Φ = Φn ◦ · · · ◦ Φ1

I Φ(u) = σ(Au + b)
I ResNet Φ(u) = u + σ(Au + b)



Equivariant Linear Functions (πX ≡ id)

In a nutshell: Linear G -equivariant operators are convolutions
with a kernel satisfying an additional constraint.

Theorem paraphrasing e.g. Weiler and Cesa 2019

Let X ,Y be function spaces, e.g. X = L2(Rn,Rm),
Y = L2(Rn,RM). The linear operator A : X → Y ,

Au(x) =

∫
K (x , y)u(y)dy

with K : Rn → RM×m is G -equivariant iff there is a k such that

K (x , y) = k(x − y)

and k is rotational invariant, i.e. for all R ∈ H, x ∈ Rn:
k(Rx) = k(x).



Equivariance and Inverse Problems

I inverse problem Ax = y , solution operator: Φ : Y → X

I Hope Φ ◦ A is equivariant, e.g. Rθ ◦ Φ ◦ A = Φ ◦ A ◦ Rθ
I Φ ◦ A is not generally equivariant
I Example: TV and inpainting

R

A

A

Φ

Φ

R

6=



Proximal Operators and Equivariance

proxJ(z) := arg min
x

{
1

2
‖x − z‖2 + J(x)

}
Theorem Celledoni et al. 2021

Let gX be unitary, J G -invariant and proxJ be well-defined and
single-valued. Then proxJ is equivariant.

I Proof does generalize to variatial regularization with squared
L2-datafit if A is equivariant

I For example the total variation (and higher order variants) is
invariant to rigid motion

This theorem motivates iterative unrolling for image reconstruction
with equivariant neural networks in place of the prox of a
variational regulariser!



CT Results
Equivariant = roto-translations; Ordinary = translations

Equivariant improves upon Ordinary:
I higher SSIM and PSNR
I fewer artefacts and finer details
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CT Results
Equivariant = roto-translations; Ordinary = translations

I Equivariant improves upon Ordinary on small training sets

10 100 1000
Training set size N
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Generalisation performance of the learned methods



Take Away Messages

I Continuum modelling of neural networks opens the toolbox
of mathematical and numerical analysis

I Connections of deep learning to ODEs, optimal control,
group theory ...

I Design of neural networks with certain structure: stability,
equivariance

I Many open questions where mathematicians can help

E. Celledoni, M. J. Ehrhardt, C. Etmann, R.I. McLachlan, B. Owren, C. B. Schönlieb,
F. Sherry, Structure preserving deep learning, arXiv:2006.03364, EJAM 2021


