Bilevel Learning for Inverse Problems

Matthias J. Ehrhardt

Department of Mathematical Sciences, University of Bath, UK

September 15, 2021

Joint work with:
L. Roberts (ANU, Australia)
F. Sherry, M. Graves, G. Maierhofer, G. Williams, C.-B. Schönlieb (all Cambridge, UK), M. Benning (Queen Mary, UK), J.C. De los Reyes (EPN, Ecuador)
1) Motivation

$$\min_x \frac{1}{2} \|Ax - y\|_2^2 + \lambda R(x)$$

2) Bilevel Learning

$$\min_{x,y} f(x, y)$$

$$x \in \arg \min_z g(z, y)$$

3) Efficient solution?
Yes, e.g. inexact DFO algorithms
Ehrhardt and Roberts JMIV 2021

4) High-dimensional learning?
Yes, e.g. learn MRI sampling
Sherry et al. IEEE TMI 2020
Inverse problems

\[A x = y \]

\(x \): desired solution
\(y \): observed data
\(A \): mathematical model

Goal: recover \(X \) given \(y \)
Inverse problems

\[Ax = y \]

\(x \) : desired solution
\(y \) : observed data
\(A \) : mathematical model

Goal: recover \(x \) given \(y \)

Hadamard (1902): We call an inverse problem \(Ax = y \) **well-posed** if

(1) a solution \(x^* \) exists
(2) the solution \(x^* \) is **unique**
(3) \(x^* \) depends **continuously** on data \(y \).

Otherwise, it is called **ill-posed**.

Most interesting problems are **ill-posed**.
How to solve inverse problems?

Variational regularization (∼1990)
Approximate a solution \(x^* \) of \(Ax = y \) via

\[
\hat{x} \in \arg \min_x \left\{ D(Ax, y) + \lambda R(x) \right\}
\]

- \(D \) data fidelity, related to noise statistics

- \(R \) regularizer: penalizes unwanted features, ensures stability and uniqueness

- \(\lambda \) regularization parameter: \(\lambda \geq 0 \). If \(\lambda = 0 \), then an original solution is recovered. As \(\lambda \to \infty \), more and more weight is given to the regularizer \(R \).

textbooks: Scherzer et al. 2008, Ito and Jin 2015, Benning and Burger 2018
Example: Regularizers

- Tikhonov regularization: $\mathcal{R}(x) = \frac{1}{2} \|x\|_2^2$
- H^1 squared semi-norm: $\mathcal{R}(x) = \frac{1}{2} \|\nabla x\|_2^2$
Example: Regularizers

- Tikhonov regularization: $\mathcal{R}(x) = \frac{1}{2} \| x \|_2^2$
- H^1 squared semi-norm: $\mathcal{R}(x) = \frac{1}{2} \| \nabla x \|_2^2$
- Total Variation $\mathcal{R}(x) = \| \nabla x \|_1$ Rudin, Osher, Fatemi 1992

![Noisy image](image1.png) ![TV denoised image](image2.png)
Example: Regularizers

- Tikhonov regularization: $\mathcal{R}(x) = \frac{1}{2} \| x \|_2^2$
- H^1 squared semi-norm: $\mathcal{R}(x) = \frac{1}{2} \| \nabla x \|_2^2$
- Total Variation $\mathcal{R}(x) = \| \nabla x \|_1$ Rudin, Osher, Fatemi 1992
- Total Generalized Variation $\mathcal{R}(x) = \inf_{v} \| \nabla x - v \|_1 + \beta \| \nabla v \|_1$ Bredies, Kunisch, Pock 2010
Example: Regularizers

- Tikhonov regularization: \(R(x) = \frac{1}{2} \| x \|_2^2 \)
- \(H^1 \) squared semi-norm: \(R(x) = \frac{1}{2} \| \nabla x \|_2^2 \)
- Total Variation \(R(x) = \| \nabla x \|_1 \) Rudin, Osher, Fatemi 1992
- Total Generalized Variation
 \[R(x) = \inf_v \| \nabla x - v \|_1 + \beta \| \nabla v \|_1 \] Bredies, Kunisch, Pock 2010

How to choose the regularization?
More “complicated” regularizers

\[
\min_x \frac{1}{2} \|Ax - y\|_2^2 + \alpha \left(\sum_j \| (\nabla x)_j \|_2 \right) = TV(x)
\]
More “complicated” regularizers

\[
\min_x \frac{1}{2} \|Ax - y\|_2^2 + \alpha \left(\sum_j \sqrt{\| (\nabla x)_j \|_2^2 + \nu^2} + \frac{\xi}{2} \|x\|_2^2 \right) \approx TV(x)
\]

- Smooth and strongly convex
- Solution depends on choices of \(\alpha, \nu\) and \(\xi\)
More “complicated” regularizers

\[
\begin{align*}
\min_x \frac{1}{2} \|Ax - y\|_2^2 + \alpha \left(\sum_j \sqrt{\|\nabla x_j\|_2^2 + \nu^2 + \frac{\xi}{2} \|x\|_2^2} \right) \\
\approx \text{TV}(x)
\end{align*}
\]

- Smooth and strongly convex
- Solution depends on choices of \(\alpha, \nu\) and \(\xi\)

Vary \(\nu\) (\(\alpha = 1, \xi = 10^{-3}\))

Vary \(\xi\) (\(\alpha = 1, \nu = 10^{-3}\))

How to choose all these parameters?
Example: Magnetic Resonance Imaging (MRI)

Continuous model: Fourier transform

\[A\mathbf{x}(s) = \int_{\mathbb{R}^2} \mathbf{x}(s) \exp(-ist) \, dt \]

Discrete model: \(A = SF \in \mathbb{C}^{n \times N} \)

Solution not unique.
Example: MRI reconstruction

Compressed Sensing MRI:

\[
A = S \circ F \quad \text{Lustig, Donoho, Pauly 2007}
\]

Fourier transform \(F \), sampling \(Sw = (w_i)_{i \in \Omega} \)

\[
\hat{x} \in \arg \min_x \left\{ \sum_{i \in \Omega} |(F x)_i - y_i|^2 + \lambda \| \nabla x \|_1 \right\}
\]

- Sampling \(S^* y \)
- \(\lambda = 0 \)
- \(\lambda = 1 \)
Example: MRI reconstruction

Compressed Sensing MRI:

\[A = S \circ F \]

Lustig, Donoho, Pauly 2007

Fourier transform \(F \), sampling \(Sw = (w_i)_{i \in \Omega} \)

\[\hat{x} \in \arg \min_x \left\{ \sum_{i \in \Omega} |(F x)_i - y_i|^2 + \lambda \|\nabla x\|_1 \right\} \]

Miki Lustig

Sampling \(S^* y \)

\(\lambda = 0 \)

\(\lambda = 10^{-4} \)
Example: MRI reconstruction

Compressed Sensing MRI:

\[A = S \circ F \]

Lustig, Donoho, Pauly 2007

Fourier transform \(F \), sampling \(S \omega = (w_i)_{i \in \Omega} \)

\[\hat{x} \in \arg \min_x \left\{ \sum_{i \in \Omega} |(Fx)_i - y_i|^2 + \lambda \|
\n\n
\n
\n
Miki Lustig

sampling \(S^*y \)

\(\lambda = 0 \)

\(\lambda = 10^{-4} \)
Example: MRI reconstruction

Compressed Sensing MRI:

\[A = S \circ F \]

Lustig, Donoho, Pauly 2007

Fourier transform \(F \), sampling \(Sw = (w_i)_{i \in \Omega} \)

\[\hat{x} \in \arg \min_{x} \left\{ \sum_{i \in \Omega} |(Fx)_i - y_i|^2 + \lambda \| \nabla x \|_1 \right\} \]

Miki Lustig

How to choose the sampling \(\Omega \)? Is there an optimal sampling?

Does a good sampling depend on \(\mathcal{R} \) and \(\lambda \)?
Motivation

- Inverse problems can be solved via variational regularization
Inverse problems can be solved via variational regularization

These models have a number of parameters: regularizer, regularization parameter, sampling, smoothness, strong convexity ...
Motivation

► **Inverse problems** can be solved via **variational regularization**

► These models have **a number of parameters**: regularizer, regularization parameter, sampling, smoothness, strong convexity ...

► Some of these parameters have underlying theory and heuristics but are generally still **difficult to choose** in practice
Bilevel Learning
Bilevel learning for inverse problems

\[\hat{x} \in \arg\min_x \{ D(Ax, y) + \lambda R(x) \} \]
Bilevel learning for inverse problems

Upper level (learning):
Given \((x^\dagger, y), y = Ax^\dagger + \varepsilon\), solve

\[
\min_{\lambda \geq 0, \hat{x}} \| \hat{x} - x^\dagger \|^2_2
\]

Lower level (solve inverse problem):

\[
\hat{x} \in \arg \min_x \{ D(Ax, y) + \lambda R(x) \}
\]

von Stackelberg 1934, Kunisch and Pock 2013, De los Reyes and Schönlieb 2013
Bilevel learning for inverse problems

Upper level (learning):
Given \((x_i^+, y_i))_{i=1}^n, y_i = Ax_i^+ + \varepsilon_i\), solve
\[
\min_{\lambda \geq 0, \hat{x}_i} \frac{1}{n} \sum_{i=1}^n \|\hat{x}_i - x_i^+\|_2^2
\]

Lower level (solve inverse problem):
\[
\hat{x}_i \in \arg \min_x \{D(Ax, y_i) + \lambda R(x)\}
\]

von Stackelberg 1934, Kunisch and Pock 2013, De los Reyes and Schönlieb 2013
Inexact Algorithms for Bilevel Learning
Bilevel learning: Reduced formulation

Upper level:
\[
\min_{\lambda \geq 0, \hat{x}} ||\hat{x} - x^\dagger||_2^2
\]

Lower level:
\[
\hat{x} = \arg \min_x \{D(Ax, y) + \lambda \mathcal{R}(x)\}
\]

where \(w\) solves \(Bw = \nabla \mathcal{U}(x(\lambda))\).
Bilevel learning: Reduced formulation

Upper level:
\[
\min_{\lambda \geq 0, \hat{x}} U(\hat{x})
\]

Lower level:
\[
\hat{x} = \arg \min_x \{ \mathcal{D}(Ax, y) + \lambda \mathcal{R}(x) \}
\]
Bilevel learning: Reduced formulation

Upper level: \(\min_{\lambda \geq 0, \hat{x}} U(\hat{x}) \)

Lower level:
\[\hat{x} = \arg \min_{x} L(x, \lambda) \]
Bilevel learning: Reduced formulation

<table>
<thead>
<tr>
<th>Upper level:</th>
<th>[\min_{\lambda \geq 0, \hat{x}} U(\hat{x})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower level:</td>
<td>[x(\lambda) := \hat{x} = \arg \min_{x} L(x, \lambda)]</td>
</tr>
<tr>
<td>Reduced formulation:</td>
<td>[\min_{\lambda \geq 0} U(x(\lambda)) =: \tilde{U}(\lambda)]</td>
</tr>
</tbody>
</table>
Bilevel learning: Reduced formulation

Upper level: \(\min_{\lambda \geq 0, \hat{x}} U(\hat{x}) \)

Lower level: \(x(\lambda) := \hat{x} = \arg \min_x L(x, \lambda) \iff \partial_x L(x(\lambda), \lambda) = 0 \)

Reduced formulation: \(\min_{\lambda \geq 0} U(x(\lambda)) =: \tilde{U}(\lambda) \)
Bilevel learning: Reduced formulation

<table>
<thead>
<tr>
<th>Upper level:</th>
<th>(\min_{\lambda \geq 0, \hat{x}} U(\hat{x}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower level:</td>
<td>(x(\lambda) := \hat{x} = \arg\min_x L(x, \lambda) \iff \partial_x L(x(\lambda), \lambda) = 0)</td>
</tr>
<tr>
<td>Reduced formulation:</td>
<td>(\min_{\lambda \geq 0} U(x(\lambda)) =: \tilde{U}(\lambda))</td>
</tr>
</tbody>
</table>

\[
0 = \partial^2_x L(x(\lambda), \lambda)x'(\lambda) + \partial_\lambda \partial_x L(x(\lambda), \lambda) \iff x'(\lambda) = -B^{-1}A
\]
Bilevel learning: Reduced formulation

Upper level:
\[\min_{\lambda \geq 0, \hat{x}} U(\hat{x}) \]

Lower level:
\[x(\lambda) := \hat{x} = \arg \min_x L(x, \lambda) \iff \partial_x L(x(\lambda), \lambda) = 0 \]

Reduced formulation:
\[\min_{\lambda \geq 0} U(x(\lambda)) =: \tilde{U}(\lambda) \]

\[0 = \partial^2_x L(x(\lambda), \lambda)x'(\lambda) + \partial_\lambda \partial_x L(x(\lambda), \lambda) \iff x'(\lambda) = -B^{-1}A \]

\[\nabla \tilde{U}(\lambda) = (x'(\lambda))^* \nabla U(x(\lambda)) \]
Bilevel learning: Reduced formulation

Upper level:
\[
\min_{\lambda \geq 0, \hat{x}} U(\hat{x})
\]

Lower level:
\[
x(\lambda) := \hat{x} = \arg \min_{x} L(x, \lambda) \quad \iff \quad \partial_x L(x(\lambda), \lambda) = 0
\]

Reduced formulation:
\[
\min_{\lambda \geq 0} U(x(\lambda)) =: \tilde{U}(\lambda)
\]

\[
0 = \partial_x^2 L(x(\lambda), \lambda) x'(\lambda) + \partial_\lambda \partial_x L(x(\lambda), \lambda) \quad \iff \quad x'(\lambda) = -B^{-1}A
\]

\[
\nabla \tilde{U}(\lambda) = (x'(\lambda))^* \nabla U(x(\lambda))
\]
\[
= -A^* B^{-1} \nabla U(x(\lambda)) = -A^* w
\]

where \(w\) solves \(Bw = \nabla U(x(\lambda))\).
Algorithm for Bilevel learning

Upper level: \(\min_{\lambda \geq 0, \hat{x}} U(\hat{x}) \)

Lower level: \(x(\lambda) := \arg \min_x L(x, \lambda) \)

Reduced formulation: \(\min_{\lambda \geq 0} U(x(\lambda)) =: \tilde{U}(\lambda) \)

- Solve reduced formulation via L-BFGS-B \cite{nocedal2000}
- Compute gradients: Given \(\lambda \)
 1. Compute \(x(\lambda) \), e.g. via PDHG \cite{chambolle2011}
 2. Solve \(Bw = \nabla U(x(\lambda)), B := \partial_x^2 L(x(\lambda), \lambda) \) e.g. via CG
 3. Compute \(\nabla \tilde{U}(\lambda) = -A^* w, A := \partial_\lambda \partial_x L(x(\lambda), \lambda) \)

This approach has a number of problems:
- \(x(\lambda) \) has to be computed
- Derivative assumes \(x(\lambda) \) is exact minimizer
- Large system of linear equations has to be solved
Algorithm for Bilevel learning

Upper level: $\min_{\lambda \geq 0, \hat{x}} U(\hat{x})$

Lower level: $x(\lambda) := \arg\min_x L(x, \lambda)$

Reduced formulation: $\min_{\lambda \geq 0} U(x(\lambda)) =: \tilde{U}(\lambda)$

- Solve reduced formulation via L-BFGS-B Nocedal and Wright 2000
- Compute gradients: Given λ
 1. Compute $x(\lambda)$, e.g. via PDHG Chambolle and Pock 2011
 2. Solve $Bw = \nabla U(x(\lambda))$, $B := \partial^2_x L(x(\lambda), \lambda)$ e.g. via CG
 3. Compute $\nabla \tilde{U}(\lambda) = -A^*w$, $A := \partial_\lambda \partial_x L(x(\lambda), \lambda)$

This approach has a number of problems:
- $x(\lambda)$ has to be computed
- Derivative assumes $x(\lambda)$ is exact minimizer
- Large system of linear equations has to be solved
How to solve Bilevel Learning Problems?

- Most people: Ignore “problems”, just compute it. e.g. Sherry et al. 2020
- Semi-smooth Newton: similar fundamental problems Kunisch and Pock 2013
- Replace lower level problem by finite number of iterations of algorithms: not bilevel anymore Ochs et al. 2015
How to solve Bilevel Learning Problems?

- Most people: Ignore “problems”, just compute it. e.g. Sherry et al. 2020
- Semi-smooth Newton: similar fundamental problems Kunisch and Pock 2013
- Replace lower level problem by finite number of iterations of algorithms: not bilevel anymore Ochs et al. 2015

Use algorithm that acknowledges difficulties: e.g. inexact DFO Ehrhardt and Roberts 2021
Dynamic Accuracy Derivative Free Optimization

\[\min_{\theta} f(\theta) \]

Key idea: Use \(f_\epsilon \):

\[|f(\theta) - f_\epsilon(\theta)| < \epsilon \]

Accuracy as low as possible, but as high as necessary.

E.g. if

\[f_{\epsilon k+1}(\theta^{k+1}) < f_{\epsilon k}(\theta^k) - \epsilon^k - \epsilon^{k+1}, \]

then

\[f(\theta^{k+1}) < f(\theta^k) \]
Dynamic Accuracy Derivative Free Optimization

$$\min_{\theta} f(\theta)$$

For $k = 0, 1, 2, \ldots$

1) Sample $f_{\epsilon k}$ in a neighbourhood of θ_k
2) Build model $m_k(\theta) \approx f_{\epsilon k}$
3) Minimise m_k around θ_k to get θ_{k+1}
4) If model decrease is sufficient compared to function error: accept step

Theorem Ehrhardt and Roberts 2021

If f is sufficiently smooth and bounded below, then the algorithm is globally convergent in the sense that

$$\lim_{k \to \infty} \| \nabla f(\theta_k) \| = 0.$$
1D Denoising Problem (learn α, ν and ξ)
Ehrhardt and Roberts 2021

$$\min_{\theta} \left\{ \frac{1}{2} \sum_i \| x_i(\theta) - x_i \|^2_2 + \beta \left(\frac{L(\theta)}{\kappa(\theta)} \right)^2 \right\}$$

$$x_i(\theta) = \arg \min_x \frac{1}{2} \| x - y_i \|^2_2 + \alpha \left(\sum_j \sqrt{\| (\nabla x)_j \|^2_2 + \nu^2} + \frac{\xi}{2} \| x \|^2_2 \right)$$
1D Denoising Problem (learn α, ν and ξ)

\[
\min_{\theta} \left\{ \frac{1}{2} \sum_i \| x_i(\theta) - x_i \|_2^2 + \beta \left(\frac{L(\theta)}{\kappa(\theta)} \right)^2 \right\}
\]

\[
x_i(\theta) = \arg\min_x \frac{1}{2} \| x - y_i \|_2^2 + \alpha \left(\sum_j \sqrt{\| (\nabla x)_j \|_2^2 + \nu^2} + \frac{\xi}{2} \| x \|_2^2 \right)
\]

With more evaluations of $f(\theta)$, the parameter choices give better reconstructions:

Reconstruction of x_1 after N evaluations of $f(\theta)$
1D Denoising Problem (learn α, ν and ξ) Ehrhardt and Roberts 2021

Dynamic accuracy is faster than “fixed accuracy” (at least $10\times$ speedup):

![Graph showing objective value $f(\theta)$ vs. computational effort](image)

Objective value $f(\theta)$ vs. computational effort
Always learns the same parameter for sufficient accuracy.

Robustness to initialization
Denoising Problem (learn α, ν and ξ) Ehrhardt and Roberts 2021

Bilevel learning is a convergent regularization?
Learn sampling pattern in MRI
Some important works on sampling for MRI

Uninformed
- Cartesian, radial, variable density ... e.g. Lustig et al. '07
 - ✓ simple to implement
 - ✗ not tailored to application or reconstruction method
- compressed sensing e.g. Candes and Romberg '07, Kutyniok and Lim '18
 - ✓ mathematical guarantees
 - ✗ limited to sparse signals and sparsity promoting regularizers
Some important works on sampling for MRI

Uninformed
- Cartesian, radial, variable density ... e.g. Lustig et al. '07
 - ✔ simple to implement
 - ✗ not tailored to application or reconstruction method
- compressed sensing e.g. Candes and Romberg '07, Kutyniok and Lim '18
 - ✔ mathematical guarantees
 - ✗ limited to sparse signals and sparsity promoting regularizers

Learned
- **Largest Fourier coefficients** of training set Knoll et al. '11
 - ✔ simple to implement, computationally efficient
 - ✗ not tailored to reconstruction method
- **greedy**: iteratively select “best” sample e.g. Gözcü et al. '18
 - ✔ adaptive to dataset, reconstruction method
 - ✗ only discrete values; computationally heavy
- **Deep learning**: e.g. parameters in network Wang et al. '21
 - ✔ realistic and easy to implement sampling patterns; end-to-end
 - ✗ limited to neural network reconstruction
Learn sampling pattern in MRI

Lower level (MRI reconstruction):

\[
x_i(\lambda, s) = \arg \min_x \left\{ \sum_{j=1}^{N} s_j^2 |(Fx - y_i)_j|^2 + \lambda \mathcal{R}(x) \right\} \quad \text{for} \quad s_i \in \{0, 1\}
\]

Sherry et al. 2020
Learn sampling pattern in MRI

Upper level (learning):
Given training data \((x_i^\dagger, y_i)^n_{i=1}\), solve

\[
\min_{\lambda \geq 0, s \in \{0,1\}^m} \frac{1}{n} \sum^n_{i=1} \|x_i(\lambda, s) - x_i^\dagger\|^2_2 + \beta \sum^m_{j=1} s_j + \beta \sum^m_{j=1} s_j(1-s_j)
\]

Lower level (MRI reconstruction):

\[
x_i(\lambda, s) = \arg \min_x \left\{ \sum^N_{j=1} s_j^2 |(Fx - y_i)_j|^2 + \lambda \mathcal{R}(x) \right\} \quad s_i \in \{0, 1\}
\]

Sherry et al. 2020
Learn sampling pattern in MRI

Upper level (learning):
Given **training data** \((x_i^\dagger, y_i)_{i=1}^n\), solve

\[
\min_{\lambda \geq 0, s \in \{0,1\}^m} \frac{1}{n} \sum_{i=1}^n \|x_i(\lambda, s) - x_i^\dagger\|_2^2 + \beta_1 \sum_{j=1}^m s_j
\]

Lower level (MRI reconstruction):

\[
x_i(\lambda, s) = \arg \min_x \left\{ \sum_{j=1}^N s_j^2 |(Fx - y_i)_j|^2 + \lambda \mathcal{R}(x) \right\} \quad s_j \in \{0, 1\}
\]

Sherry et al. 2020
Learn sampling pattern in MRI

Upper level (learning):
Given *training data* \((x_i^\dagger, y_i)_{i=1}^n \), solve

\[
\min_{\lambda \geq 0, s \in [0,1]^m} \frac{1}{n} \sum_{i=1}^n \|x_i(\lambda, s) - x_i^\dagger\|_2^2 + \beta_1 \sum_{j=1}^m s_j
\]

Lower level (MRI reconstruction):

\[
x_i(\lambda, s) = \arg \min_x \left\{ \sum_{j=1}^N s_j^2 |(Fx - y_i)_j|^2 + \lambda R(x) \right\} \quad s_i \in [0,1]
\]

Sherry et al. 2020
Learn sampling pattern in MRI

Upper level (learning):
Given **training data** \((x_i^*, y_i)_{i=1}^n\), solve

\[
\min_{\lambda \geq 0, s \in [0,1]^m} \frac{1}{n} \sum_{i=1}^n \| x_i(\lambda, s) - x_i^* \|_2^2 + \beta_1 \sum_{j=1}^m s_j + \beta_2 \sum_{j=1}^m s_j(1 - s_j)
\]

Lower level (MRI reconstruction):

\[
x_i(\lambda, s) = \arg \min_x \left\{ \sum_{j=1}^N s_j^2 |(F_x - y_i)_j|^2 + \lambda R(x) \right\} \quad s_i \in [0, 1]
\]

Sherry et al. 2020
Warm up

Figure: Discrete 2d bump

(a) Original data: $\log |y|$
(b) Noisy data: $\log |\tilde{y}|$

(c) Learned sampling pattern
(d) Largest 2.76% Fourier Coefficients
Warm up

Figure: Discrete 2d bump

(a) Original data: $\log |y|$
(b) Noisy data: $\log |\tilde{y}|$

(c) Learned sampling pattern
(d) Largest 2.76% Fourier Coefficients

(e) Learned sampling pattern
(f) Largest 2.76% Fourier Coefficients
Increasing sparsity Sherry et al. 2020

Reminder: **Upper level** (learning)

\[
\min_{\lambda \geq 0, s \in [0,1]^m} \frac{1}{n} \sum_{i=1}^{n} \| x_i(\lambda, s) - x_i^\dagger \|^2_2 + \beta_1 \sum_{j=1}^{m} s_j + \beta_2 \sum_{j=1}^{m} s_j(1 - s_j)
\]

\[\beta = \beta_1 = \beta_2\]
Compare regularizers

Sherry et al. 2020
Compare Cartesian samplings

Sherry et al. 2020

```

Sherry et al. 2020

[23] = Gözcü et al. 2018
```

number of lower-level solves

regularizer = TV
More insights: sampling and number of data \cite{Sherry2020}
High resolution imaging: 1024^2 Sherry et al. 2020
Conclusions

- **Bilevel learning**: supervised learning framework to learn parameters in variational regularization
- **Optimization** plays a key role in bilevel learning
 - Dynamic accuracy: no need to specify number of iterations
 - Make learning surprisingly robust
- **Learned sampling** better than generic sampling
 - “Optimal” sampling depends on regularizer
 - Very little data needed
Conclusions

- **Bilevel learning**: supervised learning framework to learn parameters in variational regularization
- **Optimization** plays a key role in bilevel learning
 - Dynamic accuracy: no need to specify number of iterations
 - Make learning surprisingly robust
- **Learned sampling** better than generic sampling
 - “Optimal” sampling depends on regularizer
 - Very little data needed

Future work

- **Stochastic** algorithms (like stochastic gradient descent etc)
- **Nonsmooth or nonconvex** lower-level problems
- **Inexact gradient** methods
- **Neural network** regularization