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1) Motivation
’ s X

miny 5 ||Ax y|I3+AR(x)

2) Bilevel Learning miny., F(x, y)
X,y )

X € argmin, g(z,y)

3) Efficient solution?
Yes, e.g. inexact DFO algorithms = |\ |
Ehrhardt and Roberts JMIV 2021 y M e

4) High-dimensional learning?
Yes, e.g. learn MRI sampling
Sherry et al. IEEE TMI 2020




Inverse problems
Ax =y

x : desired solution
y : observed data
A : mathematical model

Goal: recover X given Y/



Inverse problems
Ax =y

x : desired solution
y : observed data
A : mathematical model

Goal: recover X given Y/

Hadamard (1902): We call an inverse problem
Ax = y well-posed if

(1) a solution x* exists
(2) the solution x* is unique

(3) x* depends continuously on data y.

Otherwise, it is called ill-posed. Jacques Hadamard

Most interesting problems are ill-posed.



How to solve inverse problems?

Variational regularization (~1990)
Approximate a solution x* of Ax = y via

X € arg min{D(Ax,y) + XR(X)}

D data fidelity, related to noise statistics

R regularizer: penalizes unwanted features, ensures stability
and uniqueness

A regularization parameter: \ > 0. If A =0, then an original
solution is recovered. As A — oo, more and more weight is
given to the regularizer R.

textbooks: Scherzer et al. 2008, Ito and Jin 2015, Benning and Burger 2018



Example: Regularizers

> Tikhonov regularization: R(x) = 3|/x||3
> H' squared semi-norm: R(x) = 5| Vx|[3
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Example: Regularizers

> Tikhonov regularization: R(x) = 3|/x||3
> H' squared semi-norm: R(x) = 3| Vx|[3
» Total Variation R(x) = ||Vx||1 Rudin, Osher, Fatemi 1992
» Total Generalized Variation
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Noisy imae TGV? denoised image

How to choose the regularization?



More “complicated” regularizers

1
min §HAX—Y||§ + 04(2 1(Vx);l2
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More “complicated” regularizers

1 §
mxmzqu—n@m(z u<vX>ju§+u2+2||xn%)
J

~TV(x)

» Smooth and strongly convex

» Solution depends on choices of a, v and &

Vary v (=1, £ =1073) Vary £ (a =1, v =1073)

T AL

v =001 v=01 v=1 £=001 £=01 =1
o = s 100 150 200 20

How to choose all these parameters?



Example: Magnetic Resonance Imaging (MRI)

Continuous model: Fourier transform
Ax(s) :/ x(s) exp(—ist)dt
RZ

Dicrete model: A = SF € C"*N

Solution not unique.



Example: MRI reconstruction

Compressed Sensing MRI:
A=SoF Lustig, Donoho, Pauly 2007
Fourier transform F, sampling Sw = (w;);cq

X € arg mXin{Z I(Fx)i — yil> + )\”VXHI}

ieQ

Py A [T
Miki Lustig

sampling S*y
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Example: MRI reconstruction

Compressed Sensing MRI:
A=SoF Lustig, Donoho, Pauly 2007
Fourier transform F, sampling Sw = (w;);cq

)?6arngin{Zl(FX)i—)/i|2+)\||vx||1} 7

icQ Miki Lustig

sampling S*y A=0 A=10"3
How to choose the sampling Q27 Is there an optimal sampling?

Does a good sampling depend on R and A7
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Motivation

> can be solved via variational
regularization

» These models have a number of parameters: regularizer,
regularization parameter, sampling, smoothness, strong
convexity ...

» Some of these parameters have underlying theory and
heuristics but are generally still difficult to choose in practice
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Bilevel learning for inverse problems



Bilevel learning for inverse problems
Upper level (learning):
Given (x,y),y = Ax" + ¢, solve

. s -l- 2
N

b

Lower level (solve inverse problem):

X € arg mxin {D(AX, Y) =+ /\R(X)} Carola Schonlieb

von Stackelberg 1934, Kunisch and Pock 2013, De los Reyes and Schonlieb 2013



Bilevel learning for inverse problems

Upper level (learning):
Given (xiT,y,-),’-’:l,y,- = AXT + ¢}, solve

- b
g 23 -

Lower level (solve inverse problem):
%; € argmin {D(Ax, yi) + AR(x)} Carola Schanlieb

von Stackelberg 1934, Kunisch and Pock 2013, De Ios Reyes and Schonlleb 2013

ynwnqmﬁ W%Q




Inexact Algorithms for Bilevel Learning



Bilevel learning: Reduced formulation

Upper level: min_||% — xT||?
A>0,%
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Bilevel learning:

Upper level:

Lower level:

x(A) =%

Reduced formulation

g V)

=argminL(x,)) <  OL(x(N\),\)=0

Reduced formulation: min U(x(\)) =: U()\)

A>0

0= 2L(x(\), )X(\) + 0adxL(x(\), ) & X' (\)=-B7lA



Bilevel learning: Reduced formulation

Upper level: min U(X)
A>0,%

Lower level:
x(A) =% =argminlL(x,\) < 0OxL(x(A),\)=0

Reduced formulation: min U(x(\)) =: U()\)
A>0

0= 2L(x(\), )X(\) + 0adxL(x(\), ) & X' (\)=-B7lA
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Bilevel learning: Reduced formulation

Upper level: min U(X)
A>0,%

Lower level:
x(A) =% =argminlL(x,\) < 0OxL(x(A),\)=0

Reduced formulation: min U(x(\)) =: U()\)
A>0

0= 2L(x(\), )X(\) + 0adxL(x(\), ) & X' (\)=-B7lA

VUR) = (X (M) VU(x(V)
= —A*B7IVU(x(\)) = —A*w

where w solves Bw = VU(x()\)).



Algorithm for Bilevel learning

A

Upper level: miny -z U(X)
Lower level: x(\) := argminy L(x, \)
Reduced formulation: min,~o U(x()\)) =: U()\)

» Solve reduced formulation via L-BFGS-B Nocedal and Wright 2000
> Compute gradients: Given A

(1) Compute x(\), e.g. via PDHG Chambolle and Pock 2011

(2) Solve Bw = VU(x())), B := dZL(x()\), ) e.g. via CG
(3) Compute VU(N) = —=A*w, A = 0)0xL(x(\), \)



Algorithm for Bilevel learning

Upper level: miny -z U(X)
Lower level: x(\) := argminy L(x, \)
Reduced formulation: min,~o U(x()\)) =: U()\)

» Solve reduced formulation via L-BFGS-B Nocedal and Wright 2000
» Compute gradients: Given A

(1) Compute x(A), e.g. via PDHG Chambolle and Pock 2011
(2) Solve Bw = VU(x())), B := 07L(x()\), ) e.g. via CG
(3) Compute VU(N) = —A*w, A := 0)0xL(x(\), \)

This approach has a number of problems:
» x(\) has to be computed

» Derivative assumes x(\) is exact minimizer

P> Large system of linear equations has to be solved



How to solve Bilevel Learning Problems?

> Most people: Ignore “problems”, just compute it. e.g. Sherry et
al. 2020

» Semi-smooth Newton: similar fundamental problems Kunisch
and Pock 2013

» Replace lower level problem by finite number of iterations of
algorithms: not bilevel anymore Ochs et al. 2015



How to solve Bilevel Learning Problems?

> Most people: Ignore “problems”, just compute it. e.g. Sherry et
al. 2020

» Semi-smooth Newton: similar fundamental problems Kunisch
and Pock 2013

» Replace lower level problem by finite number of iterations of
algorithms: not bilevel anymore Ochs et al. 2015

Use algorithm that acknowledges difficulties:
e.g. inexact DFO Ehrhardt and Roberts 2021



Dynamic Accuracy Derivative Free Optimization

ngn f(6)
Key idea: Use f.:
£(0) — £(0)] <€
Accuracy as low as possible, but as high as necessary.

Eg if
frea(05FY) < Fu(0%) — €k — L,

then
F(Ox1) < £(6%)



Dynamic Accuracy Derivative Free Optimization

main f(6)

For k=0,1,2,...
1) Sample £« in a neighbourhood of 6
2) Build model my(0) ~ fu

3) Minimise my around 6 to get 0y
)

4) If model decrease is sufficient compared

to function error: accept step

Theorem Ehrhardt and Roberts 2021

Algorithm 1 Dynamic accuracy DFO algorithm for (22)

< RY, initial <A%<

Amas.
Parameters: strictly positive values Amax, Yuec, Vincs 71, 72, 7} €
salisfying yaee < 1< yine, 1 < m < 1,and 0 < min(y, 1 —
m)/2

1: Select an arbitrary interpolation set and construct m® (26).

2 fork=0,1.2,...do

3 repeat

4 Evaluate 7(0) to sufficient accuracy that (32) holds with
(using s* from the previous iteration o this inner repeat/until loop).
Do nothing in the first iteration of this repeatiuntil loop.

s: if [|g*]| < ¢ then

6: By replacing A* with yj A" fori = 0,1,2,..., find m*

and A* such that m* is fully linear in B(6*, A¥) and A* < ||g*||

[eriticality phase]

end i

8 Calculate s* by (approximately) solving (27).

9: until the accuracy in the evaluation of 7(6%) satisfies (32) with
" laccuracy phase]

10: Evaluate? (6" +5*) sothat (32)issatisfied with ] for 76%+5%),
and calculate 3* (29).

11 Setgk+! and AFH as

0" 45t Pz 00t 2y and mt
o+ = fully linear in B(6*, A¥), (33)
6, othervise,
and
min(yecA”, Amax), 7 = n2,
are |85 7 < m and m# not o9
fully linear inB(0*, AY),
YaeelF, otherwise.

12: If64! = 9% 4 5%, then build m*+! by adding 6**" to the inter-
polation et (removing an existing poin). Otherwise, setm*+! = m*
ifmt s fully linear in B(6*, AY), or form m**! by making m* fully
linear in B(94+1, Ak+)

13: end for

If f is sufficiently smooth and bounded below, then the
algorithm is globally convergent in the sense that

IVF(0i)ll = 0.

lim
k—o0



1D Denoising Problem (learn «, v and &) ehrhardt and Roberts 2021

e 2 5 (LO)Y
min {2 S ) —xlB+ 4 () }

1 ¢
xi(0) = argmin 2 |lx — yil|3 + o <Z (V)13 +v2 + 2HXH§>
J



1D Denoising Problem (learn «, v and &) ehrhardt and Roberts 2021

min {; S ) —xlB+ 4 () }

1 ¢
xi(0) = argmin 2 |lx — yil|3 + o <Z (V)13 +v2 + 2HXH§>
J

With more evaluations of f(6), the parameter choices give better
reconstructions:

1.0 4

0.5 4

0.0 Pos

N =100

Reconstruction of x; after N evaluations of (0)



1D Denoising Problem (learn «, v and &) ehrhardt and Roberts 2021

Dynamic accuracy is faster than “fixed accuracy” (at least 10x
speedup):

10%
GD 1,000 FISTA 200
GD 10,000 ==+ FISTA 2,000
o —_ = Dynamic GD ==+ Dynamic FISTA
s ]! l \
= \ e,
o b —
E: \ \
2 10" A =, :
& \ )
3
a 3 \
[ \ o
= —— \
[ v e W L
T T T T
10* 10° 10° 107

Lower-level problem iterations

Objective value () vs. computational effort



1D Denoising Problem enrhardt and Roberts 2021

Always learns the same parameter for sufficient accuracy.

102
3 GD 1,000
s ] GD 10,000
= 10! 3 === Dynamic GD
A ] FISTA 200
= oo ] — - FISTA 2,000
E =« Dynamic FISTA
102 10—t 10° 10t 102
Initial ag

Robustness to initialization



Denoising Problem (learn «, v and &) Enrhardt and Roberts 2021

Learned «

1071 4
- 1072
107 % +
- 1074
10-7 =@)= Learned o
== Ratio ¢2/a | 1076

107% 10~* 1072 1072 10!

10™% 1077 107°
Noise level o

Bilevel learning is a convergent regularization?

Ratio 02/«



Learn sampling pattern in MRI



Some important works on sampling for MRI
Uninformed

» Cartesian, radial, variable density ... e.g. Lustig et al. '07
Ve simple to implement
X not tailored to application or reconstruction method

> compressed sensing e.g. Candes and Romberg '07, Kutyniok and Lim '18
v/ mathematical guarantees
X limited to sparse signals and sparsity promoting regularizers



Some important works on sampling for MRI

Uninformed
» Cartesian, radial, variable density ... e.g. Lustig et al. '07
Ve simple to implement
X not tailored to application or reconstruction method
> compressed sensing e.g. Candes and Romberg '07, Kutyniok and Lim '18
v/ mathematical guarantees
X limited to sparse signals and sparsity promoting regularizers

Learned

> Largest Fourier coefficients of training set Knoll et al. '11
Ve simple to implement, computationally efficient
X not tailored to reconstruction method

> greedy: iteratively select “best” sample e.g. Gézcii et al. '18

adaptive to dataset, reconstruction method

X only discrete values; computationally heavy

> Deep learning: e.g. parameters in network Wang et al. '21
v realistic and easy to implement sampling patterns; end-to-end
X limited to neural network reconstruction



Learn sampling pattern in MRI

Sherry et al. 2020



Learn sampling pattern in MRI

Upper level (learning):

Given training data (x;',y;),f’zl, solve

J Ly 12
P Xi(A,8) — x;
)\zo,sel{%71}m n Iz; H ( ) ) f H2

Lower level (MRI reconstruction):

N

xi(A,s) = argmin $ Y~ s7|(Fx — yi)|* + AR(x)

=i

Sherry et al. 2020

Si € {0» 1}



Learn sampling pattern in MRI

Upper level (learning):

Given training data (x;',y,-);’zl, solve

min = xi(\,s) — X ||5+ S
oo agn n 2 Wi 5) D s

Lower level (MRI reconstruction):

N

xi(A,s) = argmin $ Y~ s7|(Fx — yi)|* + AR(x)

=i

Sherry et al. 2020

Si € {0» 1}



Learn sampling pattern in MRI

Upper level (learning):

Given training data (x;',y;),f’zl, solve

Azo,r?elﬂ),l]m - ; lIxi(X, 8) — x7 ||+ 61 Jz_; S;
Lower level (MRI reconstruction):
N
xi(A, s) = argmin 251-2|(Fx —¥)il? + AR(x) si € [0,1]
j=1

Sherry et al. 2020



Learn sampling pattern in MRI

Upper level (learning):

Given training data (x]

X!, yi)i_q, solve

i, x1|2 (1—sj)
WD SIMCEENEIED SELED SELES

j=1

Lower level (MRI reconstruction):

N
xi(A,s) = arg mXin ZSJ-Zl(FX — )2+ AR(x) si € [0,1]
j=1

Sherry et al. 2020



Figure: Discrete 2d bump

(c) Learned sampling pattern (d) Largest 2.76% Fourier Coefficients



Figure: Discrete 2d bump (a) Original data: log |y|

) Learned sampling pattern

oo

(e) Learned sampling pattern (f) Largest 2.76% Fourier Coefficients




Increasing sparsity sherry et al. 2020

Reminder: Upper level (learning)

A>0 se[o 1™ n z IXi(A, s) = XT||2+51251 +/3zz 5i(1—s))

=i

B =p1= P2

Increasing sparsity parameter 3



Compare regularizers sherry et al. 2020

Ground truth TV regularisation  Wavelet regularisation  H' ' regularisation

= 1074

E- I | — —— Wavelet

Jé_ g \ v
. g 03 - \

é ‘”:/-:;7/:"". S—

g 0= -

Wavelet / Position along the chosen slice in k-space



0.968 0.969
330 faw 338

\

Ground truth  Our learned pattern Pattern from [23] Pattern from [2]

“ours” = Sherry et al. 2020
Line sampling (40.6%) | Free pattern (34.7%)
Our method 7192 6494 [23] = Gézcii et al. 2018
The method from [23] | 12087 3.90 - 108

= Lusti 2
number of lower-level solves [2] = Lustig et al. 2007

regularizer = TV



More insights: sampling and number of data sherry et al. 2020

s
An-3 =
+ 0.98 . 1077 o g
= 0.96 . (IR i
% 0.4 : 4 3
E . . » . g
3 (.92 { 3
E“ 0.9 . o Tf
£ 0.2 0.4 0.6 0.8 1 é
Fraction of k-space sampled =
¢ : :
209 s °*
ESIE:
s 08 }
%
E 07 : ! w

0 5 10 15 20 25 30 35
Number of examples in training set



High resolution imaging: 10242 shery et al. 2020




Conclusions

» Bilevel learning: supervised learning framework to learn
parameters in variational regularization
» Optimization plays a key role in bilevel learning
» Dynamic accuracy: no need to specify number of iterations
» Make learning surprisingly robust
> Learned sampling better than generic sampling

» “Optimal” sampling depends on regularizer
> Very little data needed



Conclusions

» Bilevel learning: supervised learning framework to learn
parameters in variational regularization

» Optimization plays a key role in bilevel learning

» Dynamic accuracy: no need to specify number of iterations
» Make learning surprisingly robust

> Learned sampling better than generic sampling

» “Optimal” sampling depends on regularizer
> Very little data needed

Future work

» Stochastic algorithms (like stochastic gradient descent etc)
» Nonsmooth or nonconvex lower-level problems
» Inexact gradient methods

» Neural network regularization



