Enhancing the Spatial Resolution of Hyperpolarized Carbon-13 MRI of Human Brain Metabolism using Structure Guidance

Matthias J. Ehrhardt

Department of Mathematical Sciences, University of Bath, UK

November 11, 2021

Joint work with:

F. Gallagher, M. McLean, C.-B. Schönlieb (all Cambridge, UK)

The Leverhulme Trust

Engineering and Physical Sciences Research Council

Motivation

- **Carbon-13** Magnetic Resonance Imaging (¹³C-MRI) has a relatively **low spatial resolution**
- enhance ¹³C-MRI resolution with structural information of Hydrogen-1 MRI (¹H-MRI)

Novelty

- Superresolution of ¹³C-MRI using ¹H-MRI gained increased interest recently Farkash et al. MRM 2019, Dwork et al. Magn Res Mat Phys Bio Med 2021, Ma and Park Tomography 2020
- Novelty 1: 2D v 3D anatomical data
- Novelty 2: improved mathematical model (dTV)

Proposed Method **3D-dTV** $\hat{x} = \arg \min_{x} \left\{ \|Sx - y\|_{2}^{2} + \lambda \mathcal{R}(x) \right\}$

- x : desired high-resolution ¹³C-MRI image
- y : low-resolution ¹³C-MRI image
- S : resolution model; 3D high-res to 2D low-res

Proposed Method **3D-dTV** $\hat{x} = \arg \min_{x} \left\{ \|Sx - y\|_{2}^{2} + \lambda \mathcal{R}(x) \right\}$

- $||Sx y||_2^2$: data fidelity, can be related to noise statistics
- \mathcal{R} : directional total variation (dTV) encourages similarity to ¹H-MRI and smoothness Ehrhardt and Betcke 2016
- $\lambda \ge 0$: balances fit-to-data and regularity

Overview of Data

- 1x In silico: GM/WM \approx 4, smooth variations
- 1x In vitro: 3 tubes
- 4x *In vivo:* healthy volunteers Grist et al. NeuroImage 2000

Images need to be registered!

- $[22] = D_{Work et al. 2021}$ enforces ¹³C-MRI and ¹H-MRI globally to either have positive or negative correlation (see CSF for large α)
- 3D-dTV leads to anatomically better-defined structures compared to 2D-dTV

Compare methods: In Vivo

- Similar observations as for in silico data
- [22] = Dwork et al. 2021. Bad fit to data

Qualitative evaluation: In Vitro

• Higher resolution but preserves smooth variations

Qualitative evaluation: In Vivo

- Anatomically well-defined images
- not constant within anatomical regions (e.g. GM, WM)

Line plots

- Some visual evidence that quantification is preserved
- Intensities are not hallucinated, see e.g. lactate in vitro

Quantitative evaluation

- Ratio of mean values in GM/WM
- Ratios in lactate and pyruvate reduced: largely due to better segmentation
- Normalized ratios constant

Conclusions and Outlook

Conclusions

- Directional total variation well-suited for ¹³C-MRI superresolution (allows locally changing correlations)
- 3D guide image better than 2D (as it reflects anatomy)
- visually higher resolution with largely preserved quantification
- ratio of means down (perhaps more accurate?)
- Computation: < 2 min on 3-year old MacBook Pro
- Parameters: 1 important parameter (+4 with robust default)

Conclusions and Outlook

Conclusions

- Directional total variation well-suited for ¹³C-MRI superresolution (allows locally changing correlations)
- 3D guide image better than 2D (as it reflects anatomy)
- visually higher resolution with largely preserved quantification
- ratio of means down (perhaps more accurate?)
- Computation: < 2 min on 3-year old MacBook Pro
- Parameters: 1 important parameter (+4 with robust default)

Future work

- Validation, validation, validation ... e.g. *in vivo* data sets with tissue samples
- Better modelling of data, e.g. by using k-space data