
Equivariant Neural Networks
for Inverse Problems

Matthias J. Ehrhardt

Department of Mathematical Sciences, University of Bath, UK

January 13, 2022

Joint work with:
F. Sherry, C. Etmann, C.-B. Schönlieb (all Cambridge, UK),
E. Celledoni, B. Owren (both NTNU, Norway)



Outline

1) Inverse Problems
and Machine Learning

x+ = Ψθ(x − τ∇D(x))

2) Equivariance

3) Numerical Results
for CT and MRI

0.967
31.0

0.970
32.6

0.953
30.3

0.969
31.9

0.955
30.2

0.970
31.9

0.948
30.1

0.953
31.4

Ground truth

Equivariant

Ordinary

E. Celledoni, M. J. Ehrhardt, C. Etmann, B. Owren, C.-B. Schönlieb, and F. Sherry,

“Equivariant neural networks for inverse problems,” Inverse Problems, vol. 37, no. 8,

p. 085006, 2021.



Inverse Problems and Machine Learning



Inverse problems

Au = b
u : desired solution

b : observed data

A : mathematical model

Goal: recover u given b
I CT: Radon / X-ray transform Au(L) =

∫
L u(x)dx

→



Inverse problems

Au = b
u : desired solution

b : observed data

A : mathematical model

Goal: recover u given b
I MRI: Fourier transform Au(k) =

∫
u(x) exp(−ikx)dx

→



Variational regularization
Approximate a solution u∗ of Au = b via

û ∈ arg min
u

{
D(u) + λR(u)

}
D measures fidelity between Au and b, related to noise statistics

R regularizer penalizes unwanted features and ensures stability;
e.g. TV Rudin, Osher, Fatimi ’92 R(u) = ‖∇u‖1,
TGV Bredies, Kunisch, Pock ’10 R(u) = infv ‖∇u − v‖1 + β‖∇v‖1

λ ≥ 0 regularization parameter balances fidelity and regularization



Algorithmic Solution

û ∈ arg min
u

{
D(u) + λR(u)

}
Proximal Gradient Descent (PGD) Beck and Teboulle ’09

uk+1 = proxτkλR(uk − τk∇D(uk))

Solution Φ(b) := limk→∞ uk .
Choose τk , λ: Φ(b) = û → u∗ if λ→ 0

Proximal operator Moreau ’62

proxf (z) := arg min
u

1

2
‖u − z‖2 + f (u)

Learned PGD Gregor and Le Cun ’10, Adler and Öktem ’17, ...

uk+1 = p̂roxi (u
k ,∇D(uk))

Solution Φ(b) := uK , “small” K ∈ N.
Learn p̂roxi : Φ(b) ≈ u∗



Algorithmic Solution

û ∈ arg min
u

{
D(u) + λR(u)

}
Proximal Gradient Descent (PGD) Beck and Teboulle ’09

uk+1 = proxτkλR(uk − τk∇D(uk))

Solution Φ(b) := limk→∞ uk .
Choose τk , λ: Φ(b) = û → u∗ if λ→ 0

Proximal operator Moreau ’62

proxf (z) := arg min
u

1

2
‖u − z‖2 + f (u)

Learned PGD Gregor and Le Cun ’10, Adler and Öktem ’17, ...

uk+1 = p̂roxi (u
k ,∇D(uk))

Solution Φ(b) := uK , “small” K ∈ N.
Learn p̂roxi : Φ(b) ≈ u∗



Equivariance and Inverse Problems



What happens when data is rotated?

Φ(Rθb)
?
= RθΦ(b)

Training data

Clean Noisy Ordinary Equivariant

Clean Noisy Ordinary Equivariant

Horizontal training example

Vertical testing example

noisy CNN proposed

Test data

Clean Noisy Ordinary Equivariant

Clean Noisy Ordinary Equivariant

Horizontal training example

Vertical testing example

noisy CNN proposed



What happens when data is rotated?

Φ(Rθb)
?
= RθΦ(b)

Training data

Clean Noisy Ordinary Equivariant

Clean Noisy Ordinary Equivariant

Horizontal training example

Vertical testing example

noisy CNN proposed

Test data

Clean Noisy Ordinary Equivariant

Clean Noisy Ordinary Equivariant

Horizontal training example

Vertical testing example

noisy CNN proposed



How to get “equivariant” mappings?
Example: Rθ rotation by θ, Φ denoising network

Φ(Rθb) = RθΦ(b)

I data augmentation: e.g. (bi , ui )i becomes (Rθbi ,Rθui )i ,θ
3 simple to implement for image-based tasks (e.g. denoising,

image segmentation etc)

7 potentially computationally costly since training data is
larger

7 no guarantees this will translate to test data
7 not always easy/possible (for inverse problems only viable in

simulations or if data is not paired (semi-supervised training))
I equivariance by design (this talk!)

3 mathematical guarantees
7 not trivial to do

Equivariant neural networks have been studied a lot for
segmentation, classification, denoising etc
Bekkers et al. ’18, Weiler and Cesa ’19, Cohen and Welling ’16, Dieleman et al.

’16, Sosnovik et al. ’19, Worall and Welling ’19, ...



How to get “equivariant” mappings?
Example: Rθ rotation by θ, Φ denoising network

Φ(Rθb) = RθΦ(b)
I data augmentation: e.g. (bi , ui )i becomes (Rθbi ,Rθui )i ,θ

3 simple to implement for image-based tasks (e.g. denoising,
image segmentation etc)

7 potentially computationally costly since training data is
larger

7 no guarantees this will translate to test data
7 not always easy/possible (for inverse problems only viable in

simulations or if data is not paired (semi-supervised training))

I equivariance by design (this talk!)

3 mathematical guarantees
7 not trivial to do

Equivariant neural networks have been studied a lot for
segmentation, classification, denoising etc
Bekkers et al. ’18, Weiler and Cesa ’19, Cohen and Welling ’16, Dieleman et al.

’16, Sosnovik et al. ’19, Worall and Welling ’19, ...



How to get “equivariant” mappings?
Example: Rθ rotation by θ, Φ denoising network

Φ(Rθb) = RθΦ(b)
I data augmentation: e.g. (bi , ui )i becomes (Rθbi ,Rθui )i ,θ

3 simple to implement for image-based tasks (e.g. denoising,
image segmentation etc)

7 potentially computationally costly since training data is
larger

7 no guarantees this will translate to test data
7 not always easy/possible (for inverse problems only viable in

simulations or if data is not paired (semi-supervised training))
I equivariance by design (this talk!)

3 mathematical guarantees
7 not trivial to do

Equivariant neural networks have been studied a lot for
segmentation, classification, denoising etc
Bekkers et al. ’18, Weiler and Cesa ’19, Cohen and Welling ’16, Dieleman et al.

’16, Sosnovik et al. ’19, Worall and Welling ’19, ...



Equivariance and inverse problems

I inverse problem Au = b, solution operator: Φ : Y → X

I Hope Φ ◦ A is equivariant, e.g. Rθ ◦ Φ ◦ A = Φ ◦ A ◦ Rθ

I Even if J is invariant, Φ ◦ A is not generally equivariant
I Example: variational TV inpainting

R

A

A

Φ

Φ

R

6=



Equivariance and inverse problems

I inverse problem Au = b, solution operator: Φ : Y → X

I Hope Φ ◦ A is equivariant, e.g. Rθ ◦ Φ ◦ A = Φ ◦ A ◦ Rθ
I Even if J is invariant, Φ ◦ A is not generally equivariant
I Example: variational TV inpainting

R

A

A

Φ

Φ

R

6=



Invariant functional implies equivariant proximal operator

Theorem Celledoni et al. ’21

Let X = L2(Ω) and J be invariant with respect to rotations:
J(Rθu) = J(u).
Then proxJ is equivariant, i.e for all u ∈ X

proxJ(Rθu) = Rθ proxJ(u).

I For example the total variation (and higher order variants) is
invariant to rigid motion

Since we are interested in Learned Gradient Descent,
equivariance of the network is a natural condition.



Invariant functional implies equivariant proximal operator

Theorem Celledoni et al. ’21

Let X = L2(Ω) and J be invariant with respect to rotations:
J(Rθu) = J(u).
Then proxJ is equivariant, i.e for all u ∈ X

proxJ(Rθu) = Rθ proxJ(u).

I For example the total variation (and higher order variants) is
invariant to rigid motion

Since we are interested in Learned Gradient Descent,
equivariance of the network is a natural condition.



Equivariance revisited



What is equivariance?

Definition (Group G)

• associativity: ∀g1, g2, g3 ∈ G : (g1 · g2) · g3 = g1 · (g2 · g3),

• identity: ∃e ∈ G ∀g ∈ G : e · g = g

• invertibility: ∀g ∈ G ∃g−1 ∈ G : g−1 · g = e

Definition (G acts on set X )

• group action: G × X → X , (g , x) 7→ g · x
• identity: e · x = x

• compatibility: g1 · (g2 · x) = (g1 · g2) · x

Definition (Equivariance) G acts on X and Y , Φ : X → Y is
called equivariant if for all g ∈ G , x ∈ X

g · Φ(x) = Φ(g · x)



What is equivariance?

Definition (Group G)

• associativity: ∀g1, g2, g3 ∈ G : (g1 · g2) · g3 = g1 · (g2 · g3),

• identity: ∃e ∈ G ∀g ∈ G : e · g = g

• invertibility: ∀g ∈ G ∃g−1 ∈ G : g−1 · g = e

Definition (G acts on set X )

• group action: G × X → X , (g , x) 7→ g · x
• identity: e · x = x

• compatibility: g1 · (g2 · x) = (g1 · g2) · x

Definition (Equivariance) G acts on X and Y , Φ : X → Y is
called equivariant if for all g ∈ G , x ∈ X

g · Φ(x) = Φ(g · x)



Group actions on functions, e.g. X = L2(Rn,Rm)

domain: (g · u)(x) = u(g−1 · x)

translations, rotations, affine transformations

Example: G = (Rn,+) may act on X via

I (g · u)(x) = u(x − g)

I (g · u)(x) = u(x exp(g)), if n = 1

range: (g · u)(x) = g · u(x)

Example: G = (Rm,+) may act on X via

I (g · u)(x) = u(x) + g

both domain and range: (g · u)(x) = g · u(g−1 · x)



Group actions on functions, e.g. X = L2(Rn,Rm)

domain: (g · u)(x) = u(g−1 · x)

translations, rotations, affine transformations

Example: G = (Rn,+) may act on X via

I (g · u)(x) = u(x − g)

I (g · u)(x) = u(x exp(g)), if n = 1

range: (g · u)(x) = g · u(x)

Example: G = (Rm,+) may act on X via

I (g · u)(x) = u(x) + g

both domain and range: (g · u)(x) = g · u(g−1 · x)



Group actions on functions, e.g. X = L2(Rn,Rm)

domain: (g · u)(x) = u(g−1 · x)

translations, rotations, affine transformations

Example: G = (Rn,+) may act on X via

I (g · u)(x) = u(x − g)

I (g · u)(x) = u(x exp(g)), if n = 1

range: (g · u)(x) = g · u(x)

Example: G = (Rm,+) may act on X via

I (g · u)(x) = u(x) + g

both domain and range: (g · u)(x) = g · u(g−1 · x)



Acting on domain and range: (g · u)(x) = g · u(g−1 · x)
I G = Rn o H, H subgroup of the general linear group GL(n)

I g · x = Rx + t, g = (t,R) ∈ G , t ∈ Rn,R ∈ H

I π : H → GL(m) representation of H

I (g · u)(x) = π(R)u(R−1(x − t))

Examples
I Translations: H = {e}
I Roto-Translations: H = SO(n)
I Finite Roto-Translations H = ZM (finite subgroup of SO(2))

I Example: u vector-field, move and transform vectors

Weiler and Cesa 2019



More details: implies equivariant proximal operator

Theorem Celledoni et al. ’21

I G acts isometrically on X (‖g · u‖ = ‖u‖)
I J : X → R ∪ {+∞} is invariant (J(g · u) = J(u))

I J has well-defined single-valued proximal operator

Then proxJ is equivariant, i.e for all u ∈ X and g ∈ G

proxJ(g · u) = g · proxJ(u).

I Proof does generalize to variatial regularization with
L2-datafit if A is equivariant



Equivariance and Neural Networks



How to get “equivariant” networks?
Proposition Let G be any group.

I The composition Φ ◦Ψ is equivariant if Φ and Ψ are
equivariant.

I The sum Φ + Ψ is equivariant if Φ and Ψ are equivariant.

I The identity Φ(u) = u is equivariant.

Outlook (linearity) There are non-trivial G -equivariant linear
operators.

Proposition (bias) Let Φ : X → X , (Φu)(x) = u(x) + b(x). For
any group G , Φ is equivariant if b is invariant, i.e. g · b = b.

Outlook (nonlinearity) There are G -equivariant nonlinearities.

Construct G -equivariant neural networks the usual way:
I layers Φ = Φn ◦ · · · ◦ Φ1

I Φ(u) = σ(Au + b)
I ResNet Φ(u) = u + σ(Au + b)



How to get “equivariant” networks?
Proposition Let G be any group.

I The composition Φ ◦Ψ is equivariant if Φ and Ψ are
equivariant.

I The sum Φ + Ψ is equivariant if Φ and Ψ are equivariant.

I The identity Φ(u) = u is equivariant.

Outlook (linearity) There are non-trivial G -equivariant linear
operators.

Proposition (bias) Let Φ : X → X , (Φu)(x) = u(x) + b(x). For
any group G , Φ is equivariant if b is invariant, i.e. g · b = b.

Outlook (nonlinearity) There are G -equivariant nonlinearities.

Construct G -equivariant neural networks the usual way:
I layers Φ = Φn ◦ · · · ◦ Φ1

I Φ(u) = σ(Au + b)
I ResNet Φ(u) = u + σ(Au + b)



How to get “equivariant” networks?
Proposition Let G be any group.

I The composition Φ ◦Ψ is equivariant if Φ and Ψ are
equivariant.

I The sum Φ + Ψ is equivariant if Φ and Ψ are equivariant.

I The identity Φ(u) = u is equivariant.

Outlook (linearity) There are non-trivial G -equivariant linear
operators.

Proposition (bias) Let Φ : X → X , (Φu)(x) = u(x) + b(x). For
any group G , Φ is equivariant if b is invariant, i.e. g · b = b.

Outlook (nonlinearity) There are G -equivariant nonlinearities.

Construct G -equivariant neural networks the usual way:
I layers Φ = Φn ◦ · · · ◦ Φ1

I Φ(u) = σ(Au + b)
I ResNet Φ(u) = u + σ(Au + b)



How to get “equivariant” networks?
Proposition Let G be any group.

I The composition Φ ◦Ψ is equivariant if Φ and Ψ are
equivariant.

I The sum Φ + Ψ is equivariant if Φ and Ψ are equivariant.

I The identity Φ(u) = u is equivariant.

Outlook (linearity) There are non-trivial G -equivariant linear
operators.

Proposition (bias) Let Φ : X → X , (Φu)(x) = u(x) + b(x). For
any group G , Φ is equivariant if b is invariant, i.e. g · b = b.

Outlook (nonlinearity) There are G -equivariant nonlinearities.

Construct G -equivariant neural networks the usual way:
I layers Φ = Φn ◦ · · · ◦ Φ1

I Φ(u) = σ(Au + b)
I ResNet Φ(u) = u + σ(Au + b)



How to get “equivariant” networks?
Proposition Let G be any group.

I The composition Φ ◦Ψ is equivariant if Φ and Ψ are
equivariant.

I The sum Φ + Ψ is equivariant if Φ and Ψ are equivariant.

I The identity Φ(u) = u is equivariant.

Outlook (linearity) There are non-trivial G -equivariant linear
operators.

Proposition (bias) Let Φ : X → X , (Φu)(x) = u(x) + b(x). For
any group G , Φ is equivariant if b is invariant, i.e. g · b = b.

Outlook (nonlinearity) There are G -equivariant nonlinearities.

Construct G -equivariant neural networks the usual way:
I layers Φ = Φn ◦ · · · ◦ Φ1

I Φ(u) = σ(Au + b)
I ResNet Φ(u) = u + σ(Au + b)



Equivariant linear functions (πX ≡ id)

In a nutshell: Linear G -equivariant operators are convolutions
with a kernel satisfying an additional constraint.

Theorem paraphrasing e.g. Weiler and Cesa 2019

Let X ,Y be function spaces, e.g. X = L2(Rn,Rm),
Y = L2(Rn,RM). The linear operator Φ : X → Y ,

Φf (x) =

∫
K (x , y)f (y)dy

with K : Rn → RM×m is G -equivariant iff there is a k such that

Φf (x) =

∫
k(x − y)f (y)dy

and k is H-invariant, i.e. for all R ∈ H, x ∈ Rn: k(Rx) = k(x).



Equivariant linear functions (πX ≡ id)

In a nutshell: Linear G -equivariant operators are convolutions
with a kernel satisfying an additional constraint.

Theorem paraphrasing e.g. Weiler and Cesa 2019

Let X ,Y be function spaces, e.g. X = L2(Rn,Rm),
Y = L2(Rn,RM). The linear operator Φ : X → Y ,

Φf (x) =

∫
K (x , y)f (y)dy

with K : Rn → RM×m is G -equivariant iff there is a k such that

Φf (x) =

∫
k(x − y)f (y)dy

and k is H-invariant, i.e. for all R ∈ H, x ∈ Rn: k(Rx) = k(x).



Equivariant nonlinearities (πX ≡ id)

In a nutshell: There are G -equivariant nonlinearities.

Let ψ : R→ R be any non-linear function.

I Pointwise and componentwise nonlinearity ΨP : X → X ,

[ΨP(u)](x) = ~ψ(u(x)), ~ψ(x)i = ψ(xi )

I Norm nonlinearity ΨN : X → X ,

[ΨN(u)](x) = u(x) · ψ(‖u(x)‖)

Lemma Both nonlinearities are G -equivariant.



Equivariant nonlinearities (πX ≡ id)

In a nutshell: There are G -equivariant nonlinearities.

Let ψ : R→ R be any non-linear function.

I Pointwise and componentwise nonlinearity ΨP : X → X ,

[ΨP(u)](x) = ~ψ(u(x)), ~ψ(x)i = ψ(xi )

I Norm nonlinearity ΨN : X → X ,

[ΨN(u)](x) = u(x) · ψ(‖u(x)‖)

Lemma Both nonlinearities are G -equivariant.



Numerical Results



Datasets
I CT: LIDC-IDRI data set, 5000+200+1000 images, 50 views

u FBP(y)u FBP(y)

I MR: FastMRI data set, 5000+200+1000 images

S u F−1(S∗y) u F−1(S∗y)



CT Results
Equivariant = roto-translations; Ordinary = translations

Equivariant improves upon Ordinary:
I higher SSIM and PSNR
I fewer artefacts and finer details

Ordinary Equivariant Ground truth
0.967
31.0

0.970
32.6

0.953
30.3

0.969
31.9

0.955
30.2

0.970
31.9

0.948
30.1

0.953
31.4

Ground truth

Equivariant

Ordinary

0.967
31.0

0.970
32.6

0.953
30.3

0.969
31.9

0.955
30.2

0.970
31.9

0.948
30.1

0.953
31.4

Ground truth

Equivariant

Ordinary

0.967
31.0

0.970
32.6

0.953
30.3

0.969
31.9

0.955
30.2

0.970
31.9

0.948
30.1

0.953
31.4

Ground truth

Equivariant

Ordinary

0.967
31.0

0.970
32.6

0.953
30.3

0.969
31.9

0.955
30.2

0.970
31.9

0.948
30.1

0.953
31.4

Ground truth

Equivariant

Ordinary

0.967
31.0

0.970
32.6

0.953
30.3

0.969
31.9

0.955
30.2

0.970
31.9

0.948
30.1

0.953
31.4

Ground truth

Equivariant

Ordinary

0.967
31.0

0.970
32.6

0.953
30.3

0.969
31.9

0.955
30.2

0.970
31.9

0.948
30.1

0.953
31.4

Ground truth

Equivariant

Ordinary

0.967
31.0

0.970
32.6

0.953
30.3

0.969
31.9

0.955
30.2

0.970
31.9

0.948
30.1

0.953
31.4

Ground truth

Equivariant

Ordinary

0.967
31.0

0.970
32.6

0.953
30.3

0.969
31.9

0.955
30.2

0.970
31.9

0.948
30.1

0.953
31.4

Ground truth

Equivariant

Ordinary



CT Results
Equivariant = roto-translations; Ordinary = translations

Equivariant improves upon Ordinary:
I small training sets
I unseen orientations

10 100 1000
Training set size N

24

26

28

30

32

34

36

P
S

N
R

Upright test images

Equivariant

Ordinary

10 100 1000
Training set size N

24

26

28

30

32

34

36

P
S

N
R

Rotated test images

Equivariant

Ordinary

Generalisation performance of the learned methods



MR Results

I similar observations in MR (as in CT); smaller difference

I results for both methods better on rotated images

10 100 1000
Training set size N

24

26

28

30

32

34

P
S

N
R

Upright test images

Equivariant

Ordinary

10 100 1000
Training set size N

24

26

28

30

32

34

P
S

N
R

Rotated test images

Equivariant

Ordinary

Generalisation performance of the learned methods



MR Results

I similar observations in MR (as in CT); smaller difference

I results for both methods better on rotated images

10 100 1000
Training set size N

24

26

28

30

32

34

P
S

N
R

Upright test images

Equivariant

Ordinary

10 100 1000
Training set size N

24

26

28

30

32

34

P
S

N
R

Rotated test images

Equivariant

Ordinary

Generalisation performance of the learned methods



MR Results: Smoothing

I smoothing helps: easier to train on smoother images

10 100 1000
Training set size N

24

26

28

30

32

34

P
S

N
R

Equivariant

Unaltered

Rotated

10 100 1000
Training set size N

24

26

28

30

32

34

P
S

N
R

Ordinary

Unaltered

Rotated

Performance of the learned methods on upright images



Conclusions and Outlook
Conclusions
I no need for data augmentation: mathematically

guaranteed equivariant neural networks exist
I solution operators may not be equivariant, but proximal

operators usually are equivariant
I computationally efficient: as CNNs at run time
I useful for many applications: fewer data and robustness

Future work
I other groups, e.g. scaling of itensities; scaling of domain
I other inverse problems, e.g. compressed sensing or trivial

kernel
I higher dimensions e.g. 3D or dynamic inverse problems

E. Celledoni, M. J. Ehrhardt, C. Etmann, B. Owren, C.-B. Schönlieb, and F. Sherry,

“Equivariant neural networks for inverse problems,” Inverse Problems, vol. 37, no. 8,

p. 085006, 2021.



Conclusions and Outlook
Conclusions
I no need for data augmentation: mathematically

guaranteed equivariant neural networks exist
I solution operators may not be equivariant, but proximal

operators usually are equivariant
I computationally efficient: as CNNs at run time
I useful for many applications: fewer data and robustness

Future work
I other groups, e.g. scaling of itensities; scaling of domain
I other inverse problems, e.g. compressed sensing or trivial

kernel
I higher dimensions e.g. 3D or dynamic inverse problems

E. Celledoni, M. J. Ehrhardt, C. Etmann, B. Owren, C.-B. Schönlieb, and F. Sherry,

“Equivariant neural networks for inverse problems,” Inverse Problems, vol. 37, no. 8,

p. 085006, 2021.


