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Outline

1) Motivation

minx
1
2‖Ax − y‖2

2 +λR(x)

2) Bilevel Learning minx,y f (x , y)

x ∈ arg minz g(z , y)

3) Efficient solution?
Yes, e.g. inexact DFO algorithms
Ehrhardt and Roberts JMIV 2021
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4) High-dimensional learning?
Yes, e.g. learn MRI sampling
Sherry et al. IEEE TMI 2020



Inverse problems

Ax = y
x : desired solution

y : observed data

A : mathematical model

Goal: recover x given y

Hadamard (1902): We call an inverse problem
Ax = y well-posed if

(1) a solution x∗ exists

(2) the solution x∗ is unique

(3) x∗ depends continuously on data y .

Otherwise, it is called ill-posed. Jacques Hadamard

Most interesting problems are ill-posed.
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How to solve inverse problems?

Variational regularization (∼1990)
Approximate a solution x∗ of Ax = y via

x̂ ∈ arg min
x

{
D(Ax , y) + λR(x)

}

D data fidelity, related to noise statistics

R regularizer: penalizes unwanted features, ensures stability
and uniqueness

λ regularization parameter: λ ≥ 0. If λ = 0, then an original
solution is recovered. As λ→∞, more and more weight is
given to the regularizer R.

textbooks: Scherzer et al. 2008, Ito and Jin 2015, Benning and Burger 2018



Example: Regularizers

I Tikhonov regularization: R(x) = 1
2‖x‖

2
2

I H1 squared semi-norm: R(x) = 1
2‖∇x‖

2
2

I Total Variation R(x) = ‖∇x‖1 Rudin, Osher, Fatemi 1992

I Total Generalized Variation
R(x) = infv ‖∇x − v‖1 + β‖∇v‖1 Bredies, Kunisch, Pock 2010

How to choose the regularization?
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More “complicated” regularizers

min
x

1

2
‖Ax − y‖2

2 + α

(∑
j

‖(∇x)j‖2︸ ︷︷ ︸
=TV(x)

+
ξ

2
‖x‖2

2

)
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Example: Magnetic Resonance Imaging (MRI)

MRI scanner T ∗2

Continuous model: Fourier transform

Ax(s) =

∫
R2

x(s) exp(−ist)dt

Dicrete model: A = SF ∈ Cn×N

→

Solution not unique.



Example: MRI reconstruction

Compressed Sensing MRI:
A = S ◦ F Lustig, Donoho, Pauly 2007

Fourier transform F , sampling Sw = (wi )i∈Ω

x̂ ∈ arg min
x

{∑
i∈Ω

|(Fx)i − y i |2 + λ‖∇x‖1

}
Miki Lustig

sampling S∗y λ = 0 λ = 1

How to choose the sampling Ω? Is there an optimal sampling?

Does a good sampling depend on R and λ?
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Motivation

I Inverse problems can be solved via variational
regularization

I These models have a number of parameters: regularizer,
regularization parameter, sampling, smoothness, strong
convexity ...

I Some of these parameters have underlying theory and
heuristics but are generally still difficult to choose in practice
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Bilevel Learning



Bilevel learning for inverse problems

Upper level (learning):
Given (x , y), y = Ax + ε, solve

min
λ≥0,x̂

‖x̂ − x‖2
2

Lower level (solve inverse problem):

x̂ ∈ arg min
z
{D(Az , y) + λR(z)}

Carola Schönlieb

von Stackelberg 1934, Kunisch and Pock 2013, De los Reyes and Schönlieb 2013
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Bilevel learning for inverse problems

Upper level (learning):
Given (xi , yi )

n
i=1, yi = Axi + εi , solve

min
λ≥0,x̂i

1

n

n∑
i=1

‖x̂i − xi‖2
2

Lower level (solve inverse problem):

x̂i ∈ arg min
z
{D(Az , yi ) + λR(z)} Carola Schönlieb

von Stackelberg 1934, Kunisch and Pock 2013, De los Reyes and Schönlieb 2013



Inexact Algorithms for Bilevel Learning



Bilevel learning: Reduced formulation

Upper level: min
λ≥0,x̂

‖x̂ − x‖2
2

Lower level:
x̂ = arg min

z
{D(Az , y) + λR(z)}

Reduced formulation: min
λ≥0

U(x̂(λ)) =: Ũ(λ)

0 = ∂2
xL(x̂(λ), λ)x̂ ′(λ) + ∂λ∂xL(x̂(λ), λ) ⇔ x̂ ′(λ) = −B−1A

∇Ũ(λ) = (x̂ ′(λ))∗∇U(x̂(λ))

= −A∗B−1∇U(x̂(λ)) = −A∗w

where w solves Bw = ∇U(x̂(λ)).



Bilevel learning: Reduced formulation

Upper level: min
λ≥0,x̂

U(x̂)

Lower level:
x̂ = arg min

z
{D(Az , y) + λR(z)}

Reduced formulation: min
λ≥0

U(x̂(λ)) =: Ũ(λ)
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∇Ũ(λ) = (x̂ ′(λ))∗∇U(x̂(λ))

= −A∗B−1∇U(x̂(λ)) = −A∗w

where w solves Bw = ∇U(x̂(λ)).



Bilevel learning: Reduced formulation

Upper level: min
λ≥0,x̂

U(x̂)

Lower level:
x̂(λ) := x̂ = arg min

z
L(z , λ) ⇔ ∂xL(x̂(λ), λ) = 0

Reduced formulation: min
λ≥0

U(x̂(λ)) =: Ũ(λ)
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Algorithm for Bilevel learning

Upper level: minλ≥0,x̂ U(x̂)

Lower level: x̂(λ) := arg minz L(z , λ)

Reduced formulation: minλ≥0 U(x̂(λ)) =: Ũ(λ)

I Solve reduced formulation via L-BFGS-B Nocedal and Wright 2000

I Compute gradients: Given λ
(1) Compute x̂(λ), e.g. via PDHG Chambolle and Pock 2011

(2) Solve Bw = ∇U(x̂(λ)), B := ∂2
xL(x̂(λ), λ) e.g. via CG

(3) Compute ∇Ũ(λ) = −A∗w , A := ∂λ∂xL(x̂(λ), λ)

This approach has a number of problems:

I x̂(λ) has to be computed

I Derivative assumes x̂(λ) is exact minimizer

I Large system of linear equations has to be solved
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How to solve Bilevel Learning Problems?

I Most people: Ignore “problems”, just compute it. e.g. Sherry et

al. 2020

I Semi-smooth Newton: similar fundamental problems Kunisch

and Pock 2013

I Replace lower level problem by finite number of iterations of
algorithms: not bilevel anymore Ochs et al. 2015

Use algorithm that acknowledges difficulties:
e.g. inexact DFO Ehrhardt and Roberts 2021

Lindon Roberts
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Dynamic Accuracy Derivative Free Optimization

min
θ

f (θ)

Key idea: Use fε:
|f (θ)− fε(θ)| < ε

Accuracy as low as possible, but as high as necessary.

E.g. if
fεk+1(θk+1) < fεk (θk)− εk − εk+1,

then
f (θk+1) < f (θk)



Dynamic Accuracy Derivative Free Optimization

min
θ

f (θ)

For k = 0, 1, 2, . . .

1) Sample fεk in a neighbourhood of θk

2) Build model mk(θ) ≈ fεk

3) Minimise mk around θk to get θk+1

4) If model decrease is sufficient compared
to function error: accept step

Theorem Ehrhardt and Roberts 2021

If f is sufficiently smooth and bounded below, then the
algorithm is globally convergent in the sense that

lim
k→∞

‖∇f (θk)‖ = 0 .



1D Denoising Problem (learn α, ν and ξ) Ehrhardt and Roberts 2021

min
θ

{
1

2

∑
i

‖x̂i (θ)− xi‖2
2 + βκ2(θ)

}
, θ = (α, ν, ξ)

x̂i (θ) = arg min
z

1

2
‖z − yi‖2

2 + α

(∑
j

√
‖(∇z)j‖2

2 + ν2 +
ξ

2
‖z‖2

2

)

With more evaluations of f (θ), the parameter choices give better
reconstructions:
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1D Denoising Problem (learn α, ν and ξ) Ehrhardt and Roberts 2021

Dynamic accuracy is faster than “fixed accuracy” (at least 10x
speedup):
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1D Denoising Problem Ehrhardt and Roberts 2021

Always learns the same parameter for sufficient accuracy.

Robustness to initialization



Learn sampling pattern in MRI



Some important works on sampling for MRI
Uninformed
I Cartesian, radial, variable density ... e.g. Lustig et al. ’07

3 simple to implement
7 not tailored to application or reconstruction method

I compressed sensing e.g. Candes and Romberg ’07, Kutyniok and Lim ’18

3 mathematical guarantees
7 limited to sparse signals and sparsity promoting regularizers

Learned
I Largest Fourier coefficients of training set Knoll et al. ’11

3 simple to implement, computationally efficient
7 not tailored to reconstruction method

I greedy: iteratively select “best” sample e.g. Gözcü et al. ’18

3 adaptive to dataset, reconstruction method
7 only discrete values; computationally heavy

I Deep learning: e.g. parameters in network Wang et al. ’21

3 realistic and easy to implement sampling patterns; end-to-end
7 limited to neural network reconstruction
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Learn sampling pattern in MRI

Upper level (learning):
Given training data (xi , yi )

n
i=1, solve

min
λ≥0,s∈{0,1}m

1

n

n∑
i=1

‖x̂i (λ, s)− xi‖2
2

+β1

m∑
j=1

sj+β2

m∑
j=1

sj(1− sj)

Lower level (MRI reconstruction):

x̂i (λ, s) = arg min
z


N∑
j=1

s2
j |(Fz − yi )j |2 + λR(z)

 sj ∈ {0, 1}

Sherry et al. 2020

Ferdia Sherry
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sj(1− sj)

Lower level (MRI reconstruction):

x̂i (λ, s) = arg min
z


N∑
j=1

s2
j |(Fz − yi )j |2 + λR(z)

 sj ∈ {0, 1}

Sherry et al. 2020
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Warm up



Warm up



Increasing sparsity Sherry et al. 2020

Reminder: Upper level (learning)

min
λ≥0,s∈[0,1]m

1

n

n∑
i=1

‖x̂i (λ, s)− x†i ‖
2
2+β1

m∑
j=1

sj + β2

m∑
j=1

sj(1− sj)

β = β1 = β2



Compare regularizers Sherry et al. 2020



More insights: sampling and number of data Sherry et al. 2020



High resolution imaging: 10242
Sherry et al. 2020



Conclusions

I Bilevel learning: supervised learning framework to learn
parameters in variational regularization

I Optimization plays a key role in bilevel learning
I Dynamic accuracy: no need to specify number of iterations
I Make learning surprisingly robust

I Learned sampling better than generic sampling
I “Optimal” sampling depends on regularizer
I Very little data needed


