Bilevel Learning for Inverse Problems

Matthias J. Ehrhardt

Department of Mathematical Sciences, University of Bath, UK

March 11, 2022

Joint work with:

L. Roberts (ANU, Australia)

F. Sherry, M. Graves, G. Maierhofer, G. Williams, C.-B. Schönlieb (all Cambridge, UK), M. Benning (Queen Mary, UK), J.C. De los Reyes (EPN, Ecuador)

Lindon Roberts

Ferdia Sherry

The Leverhulme Trust

Engineering and Physical Sciences Research Council

Outline

1) Motivation

2) Bilevel Learning

$$\min_{x} \frac{1}{2} \|Ax - y\|_{2}^{2} + \lambda \mathcal{R}(x)$$

 $\min_{x,y} f(x,y)$ $x \in \arg\min_{z} g(z,y)$

3) Efficient solution? Yes, e.g. inexact DFO algorithms Ehrhardt and Roberts JMIV 2021

4) High-dimensional learning? Yes, e.g. learn MRI sampling Sherry et al. IEEE TMI 2020

Inverse problems

 $A\mathbf{x} = \mathbf{y}$

- x : desired solution
- y : observed data
- A : mathematical model

Goal: recover **X** given **Y**

Inverse problems

 $A\mathbf{x} = \mathbf{y}$

- x : desired solution
- y : observed data
- A : mathematical model

Goal: recover X given Y

Hadamard (1902): We call an inverse problem Ax = y well-posed if

- (1) a solution \mathbf{x}^* exists
- (2) the solution x^* is **unique**

(3) x^* depends **continuously** on data y.

Otherwise, it is called **ill-posed**.

Jacques Hadamard

Most interesting problems are **ill-posed**.

How to solve inverse problems?

Variational regularization (~1990) Approximate a solution x^* of Ax = y via $\hat{x} \in \arg \min_{x} \left\{ \mathcal{D}(Ax, y) + \lambda \mathcal{R}(x) \right\}$

- $\ensuremath{\mathcal{D}}$ data fidelity, related to noise statistics
- \mathcal{R} regularizer: penalizes unwanted features, ensures stability and uniqueness
 - λ regularization parameter: $\lambda \ge 0$. If $\lambda = 0$, then an original solution is recovered. As $\lambda \to \infty$, more and more weight is given to the regularizer \mathcal{R} .

textbooks: Scherzer et al. 2008, Ito and Jin 2015, Benning and Burger 2018

- Tikhonov regularization: $\mathcal{R}(x) = \frac{1}{2} ||x||_2^2$
- H^1 squared semi-norm: $\mathcal{R}(x) = \frac{1}{2} \|\nabla x\|_2^2$

- Tikhonov regularization: $\mathcal{R}(x) = \frac{1}{2} ||x||_2^2$
- H^1 squared semi-norm: $\mathcal{R}(x) = \frac{1}{2} \|\nabla x\|_2^2$
- ▶ Total Variation $\mathcal{R}(x) = \|\nabla x\|_1$ Rudin, Osher, Fatemi 1992

Noisy image

TV denoised image

- Tikhonov regularization: $\mathcal{R}(x) = \frac{1}{2} ||x||_2^2$
- H^1 squared semi-norm: $\mathcal{R}(x) = \frac{1}{2} \|\nabla x\|_2^2$
- ▶ Total Variation $\mathcal{R}(x) = \|\nabla x\|_1$ Rudin, Osher, Fatemi 1992
- Total Generalized Variation
 - $\mathcal{R}(x) = \inf_{v} \|
 abla x v \|_1 + eta \|
 abla v \|_1$ Bredies, Kunisch, Pock 2010

Noisy image

TGV² denoised image

- Tikhonov regularization: $\mathcal{R}(x) = \frac{1}{2} ||x||_2^2$
- H^1 squared semi-norm: $\mathcal{R}(x) = \frac{1}{2} \|\nabla x\|_2^2$
- ▶ Total Variation $\mathcal{R}(x) = \|\nabla x\|_1$ Rudin, Osher, Fatemi 1992
- Total Generalized Variation
 - $\mathcal{R}(x) = \inf_{v} \|
 abla x v \|_1 + eta \|
 abla v \|_1$ Bredies, Kunisch, Pock 2010

Noisy image

TGV² denoised image

How to choose the regularization?

More "complicated" regularizers

$$\min_{x} \frac{1}{2} \|Ax - y\|_{2}^{2} + \alpha \left(\underbrace{\sum_{j} \|(\nabla x)_{j}\|_{2}}_{=\mathrm{TV}(x)} \right)$$

---- Noisy Image True Image

More "complicated" regularizers

$$\min_{x} \frac{1}{2} \|Ax - y\|_{2}^{2} + \alpha \left(\underbrace{\sum_{j} \sqrt{\|(\nabla x)_{j}\|_{2}^{2} + \nu^{2}}}_{\approx \mathrm{TV}(x)} + \frac{\xi}{2} \|x\|_{2}^{2} \right) \underbrace{\left(\underbrace{\sum_{j} \sqrt{\|(\nabla x)_{j}\|_{2}^{2} + \nu^{2}}}_{\approx \mathrm{TV}(x)} + \frac{\xi}{2} \|x\|_{2}^{2} \right)}_{\approx \mathrm{TV}(x)}$$

Smooth and strongly convex

Solution depends on choices of α , ν and ξ

More "complicated" regularizers

$$\min_{x} \frac{1}{2} \|Ax - y\|_{2}^{2} + \alpha \left(\underbrace{\sum_{j} \sqrt{\|(\nabla x)_{j}\|_{2}^{2} + \nu^{2}}}_{\approx \mathrm{TV}(x)} + \frac{\xi}{2} \|x\|_{2}^{2} \right) \underbrace{\left(\underbrace{\sum_{j} \sqrt{\|(\nabla x)_{j}\|_{2}^{2} + \nu^{2}}}_{\approx \mathrm{TV}(x)} + \frac{\xi}{2} \|x\|_{2}^{2} \right)}_{\approx \mathrm{TV}(x)}$$

Smooth and strongly convex

Solution depends on choices of α , ν and ξ

How to choose all these parameters?

Example: Magnetic Resonance Imaging (MRI)

MRI scanner

15

Continuous model: Fourier transform

$$A\mathbf{x}(s) = \int_{\mathbb{R}^2} \mathbf{x}(s) \exp(-ist) dt$$

Dicrete model: $A = SF \in \mathbb{C}^{n \times N}$

Solution not unique.

Compressed Sensing MRI:

 $A = S \circ F \text{ Lustig, Donoho, Pauly 2007}$ Fourier transform F, sampling $Sw = (w_i)_{i \in \Omega}$ $\hat{\mathbf{x}} \in \arg \min_{\mathbf{x}} \left\{ \sum_{i \in \Omega} |(F\mathbf{x})_i - y_i|^2 + \lambda \|\nabla \mathbf{x}\|_1 \right\}$

Miki Lustig

Compressed Sensing MRI:

 $\begin{aligned} A &= S \circ F \text{ Lustig, Donoho, Pauly 2007} \\ \text{Fourier transform } F, \text{ sampling } Sw &= (w_i)_{i \in \Omega} \\ \hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \left\{ \sum_{i \in \Omega} |(F\mathbf{x})_i - \mathbf{y}_i|^2 + \lambda \|\nabla \mathbf{x}\|_1 \right\} \end{aligned}$

Miki Lustig

Compressed Sensing MRI:

$$\begin{split} A &= S \circ F \text{ Lustig, Donoho, Pauly 2007} \\ \text{Fourier transform } F, \text{ sampling } Sw &= (w_i)_{i \in \Omega} \\ \hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \left\{ \sum_{i \in \Omega} |(F\mathbf{x})_i - \mathbf{y}_i|^2 + \lambda \|\nabla \mathbf{x}\|_1 \right\} \end{split}$$

Miki Lustig

Compressed Sensing MRI:

 $\begin{aligned} A &= S \circ F \text{ Lustig, Donoho, Pauly 2007} \\ \text{Fourier transform } F, \text{ sampling } Sw &= (w_i)_{i \in \Omega} \\ \hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \left\{ \sum_{i \in \Omega} |(F\mathbf{x})_i - y_i|^2 + \lambda \|\nabla \mathbf{x}\|_1 \right\} \end{aligned}$

Miki Lustig

How to choose the sampling Ω ? Is there an optimal sampling? Does a good sampling depend on \mathcal{R} and λ ?

Motivation

Inverse problems can be solved via variational regularization

Motivation

Inverse problems can be solved via variational regularization

These models have a number of parameters: regularizer, regularization parameter, sampling, smoothness, strong convexity ...

Motivation

Inverse problems can be solved via variational regularization

- These models have a number of parameters: regularizer, regularization parameter, sampling, smoothness, strong convexity ...
- Some of these parameters have underlying theory and heuristics but are generally still difficult to choose in practice

Bilevel Learning

Bilevel learning for inverse problems

$$\hat{x} \in \arg\min_{z} \left\{ \mathcal{D}(Az, y) + \lambda \mathcal{R}(z) \right\}$$

Bilevel learning for inverse problems

Upper level (learning): Given $(x, y), y = Ax + \varepsilon$, solve

 $\min_{\substack{\lambda \ge 0, \hat{x}}} \|\hat{x} - x\|_2^2$

Lower level (solve inverse problem): $\hat{x} \in \arg \min_{z} \{ \mathcal{D}(Az, y) + \lambda \mathcal{R}(z) \}$

Carola Schönlieb

von Stackelberg 1934, Kunisch and Pock 2013, De los Reyes and Schönlieb 2013

Bilevel learning for inverse problems

Upper level (learning): Given $(x_i, y_i)_{i=1}^n, y_i = Ax_i + \varepsilon_i$, solve $\min_{\lambda \ge 0, \hat{x}_i} \frac{1}{n} \sum_{i=1}^n \|\hat{x}_i - x_i\|_2^2$

Lower level (solve inverse problem): $\hat{x}_i \in \arg \min_{z} \{ \mathcal{D}(Az, y_i) + \lambda \mathcal{R}(z) \}$

Carola Schönlieb

Inexact Algorithms for Bilevel Learning

Upper level:	$\min_{\lambda \ge 0, \hat{x}} \ \hat{x} - x \ _2^2$	
Lower level:		
	$\hat{\mathbf{v}} = \arg \min \left\{ \mathcal{D}(A_{\tau}, v) + \mathcal{D}(\tau) \right\}$	
	$X = \arg \min_{z} \{ \mathcal{D}(AZ, y) + AR(Z) \}$	
	2	

Upper level: $\min_{\lambda \ge 0, \hat{x}} U(\hat{x})$ Lower level: $\hat{x} = \arg \min_{z} \{ \mathcal{D}(Az, y) + \lambda \mathcal{R}(z) \}$

Upper level: Lower level: $\hat{x} = \arg\min_{z} L(z, \lambda)$

Reduced formulation: $\min_{\lambda \ge 0} U(\hat{x}(\lambda)) =: \tilde{U}(\lambda)$

$$0 = \partial_x^2 L(\hat{x}(\lambda), \lambda) \hat{x}'(\lambda) + \partial_\lambda \partial_x L(\hat{x}(\lambda), \lambda) \quad \Leftrightarrow \quad \hat{x}'(\lambda) = -B^{-1}A$$

$$0 = \partial_x^2 L(\hat{x}(\lambda), \lambda) \hat{x}'(\lambda) + \partial_\lambda \partial_x L(\hat{x}(\lambda), \lambda) \quad \Leftrightarrow \quad \hat{x}'(\lambda) = -B^{-1}A$$

 $\nabla \tilde{U}(\lambda) = (\hat{x}'(\lambda))^* \nabla U(\hat{x}(\lambda))$

$$0 = \partial_x^2 L(\hat{x}(\lambda), \lambda) \hat{x}'(\lambda) + \partial_\lambda \partial_x L(\hat{x}(\lambda), \lambda) \quad \Leftrightarrow \quad \hat{x}'(\lambda) = -B^{-1}A$$

 $\nabla \tilde{U}(\lambda) = (\hat{x}'(\lambda))^* \nabla U(\hat{x}(\lambda))$ $= -A^* B^{-1} \nabla U(\hat{x}(\lambda)) = -A^* w$

where *w* solves $Bw = \nabla U(\hat{x}(\lambda))$.

Algorithm for Bilevel learning

Upper level: $\min_{\lambda \ge 0, \hat{x}} U(\hat{x})$

Lower level: $\hat{x}(\lambda) := \arg \min_{z} L(z, \lambda)$

Reduced formulation: $\min_{\lambda \geq 0} U(\hat{x}(\lambda)) =: \tilde{U}(\lambda)$

- Solve reduced formulation via L-BFGS-B Nocedal and Wright 2000
- Compute gradients: Given λ
 - (1) Compute $\hat{x}(\lambda)$, e.g. via PDHG Chambolle and Pock 2011
 - (2) Solve $Bw = \nabla U(\hat{x}(\lambda)), B := \partial_x^2 L(\hat{x}(\lambda), \lambda)$ e.g. via CG
 - (3) Compute $\nabla \tilde{U}(\lambda) = -A^* w$, $A := \partial_{\lambda} \partial_x L(\hat{x}(\lambda), \lambda)$

Algorithm for Bilevel learning

Upper level: $\min_{\lambda \ge 0, \hat{x}} U(\hat{x})$

Lower level: $\hat{x}(\lambda) := \arg \min_{z} L(z, \lambda)$

Reduced formulation: $\min_{\lambda \geq 0} U(\hat{x}(\lambda)) =: \tilde{U}(\lambda)$

- Solve reduced formulation via L-BFGS-B Nocedal and Wright 2000
- Compute gradients: Given λ
 - (1) Compute $\hat{x}(\lambda)$, e.g. via PDHG Chambolle and Pock 2011
 - (2) Solve $Bw = \nabla U(\hat{x}(\lambda))$, $B := \partial_x^2 L(\hat{x}(\lambda), \lambda)$ e.g. via CG
 - (3) Compute $\nabla \tilde{U}(\lambda) = -A^* w$, $A := \partial_\lambda \partial_x L(\hat{x}(\lambda), \lambda)$

This approach has a number of problems:

- $\hat{x}(\lambda)$ has to be computed
- Derivative assumes $\hat{x}(\lambda)$ is exact minimizer
- Large system of linear equations has to be solved

How to solve Bilevel Learning Problems?

- Most people: Ignore "problems", just compute it. e.g. Sherry et al. 2020
- Semi-smooth Newton: similar fundamental problems Kunisch and Pock 2013
- Replace lower level problem by finite number of iterations of algorithms: not bilevel anymore Ochs et al. 2015

How to solve Bilevel Learning Problems?

- Most people: Ignore "problems", just compute it. e.g. Sherry et al. 2020
- Semi-smooth Newton: similar fundamental problems Kunisch and Pock 2013
- Replace lower level problem by finite number of iterations of algorithms: not bilevel anymore Ochs et al. 2015

Use algorithm that acknowledges difficulties: e.g. inexact DFO Ehrhardt and Roberts 2021

Lindon Roberts

Dynamic Accuracy Derivative Free Optimization

 $\min_{\theta} f(\theta)$

Key idea: Use f_{ϵ} :

$$|f(\theta) - f_{\epsilon}(\theta)| < \epsilon$$

Accuracy as low as possible, but as high as necessary.

E.g. if $f_{\epsilon^{k+1}}(\theta^{k+1}) < f_{\epsilon^k}(\theta^k) - \epsilon^k - \epsilon^{k+1},$ then

 $f(\theta^{k+1}) < f(\theta^k)$

Dynamic Accuracy Derivative Free Optimization

```
\min_{\theta} f(\theta)
```

For k = 0, 1, 2, ...

- 1) Sample f_{ϵ^k} in a neighbourhood of θ_k
- 2) Build model $m_k(\theta) \approx f_{\epsilon^k}$
- 3) Minimise m_k around θ_k to get θ_{k+1}
- 4) If model decrease is sufficient compared to function error: accept step

```
Algorithm 1 Dynamic accuracy DFO algorithm for (22).
     Inputs: Starting point \theta^0 \in \mathbb{R}^n, initial trust-region radius 0 < \Delta^0 <
    \Delta_{max}.
    Parameters: strictly positive values \Delta_{max}, \gamma_{dec}, \gamma_{inc}, \eta_1, \eta_2, \eta'_1, \epsilon
    satisfying \gamma_{dec} < 1 < \gamma_{inc}, \eta_1 \le \eta_2 < 1, and \eta'_1 < \min(\eta_1, 1 - \eta_2)
    \eta_2)/2.
 1: Select an arbitrary interpolation set and construct m<sup>0</sup> (26).
2: for k = 0, 1, 2, \dots do
       repeat
            Evaluate \tilde{f}(\theta^k) to sufficient accuracy that (32) holds with \eta'_1
    (using s<sup>k</sup> from the previous iteration of this inner repeat/until loop).
     Do nothing in the first iteration of this repeat/until loop
           if \|g^k\| \le \epsilon then
               By replacing \Delta^k with \gamma_{dec}^i \Delta^k for i = 0, 1, 2, ..., find m^k
    and \Delta^k such that m^k is fully linear in B(\theta^k, \Delta^k) and \Delta^k < \|g^k\|.
    Icriticality phase1
           end if
           Calculate sk by (approximately) solving (27).
     until the accuracy in the evaluation of \tilde{f}(\theta^k) satisfies (32) with
    \eta'_1
                                                                      Iaccuracy phase I
10:
        Evaluate \tilde{r}(\theta^k + s^k) so that (32) is satisfied with n', for \tilde{f}(\theta^k + s^k).
    and calculate \partial^{*} (29).
11: Set \theta^{k+1} and \Delta^{k+1} as:
                 \theta^k + s^k, \hat{\rho}^k \ge \eta_2, or \hat{\rho}^k \ge \eta_1 and m^k
    \theta^{k+1} =
                                fully linear in B(\theta^k, \Delta^k)
                                                                                       (33)
    and
                 \min(\max \Lambda^k, \Lambda_{max}), \quad \hat{\sigma}^k \ge n_2,
    \Delta^{k+1} = \int \Delta^k,
                                                \tilde{\rho}^k < \eta_2 and m^k not
                                                                                      (34)
                                                fully linear in B(\theta^k | \Lambda^k)
                 Vin Ak.
                                                othomviso
12: If \theta^{k+1} = \theta^k + s^k, then build m^{k+1} by adding \theta^{k+1} to the inter-
    polation set (removing an existing point). Otherwise, set m^{k+1} = m^k
    if m^k is fully linear in B(\theta^k, \Delta^k), or form m^{k+1} by making m^k fully
    linear in R(\theta^{k+1} \wedge A^{k+1})
```

13: end for

Theorem Ehrhardt and Roberts 2021

If f is sufficiently smooth and bounded below, then the algorithm is globally convergent in the sense that

 $\lim_{k\to\infty} \|\nabla f(\theta_k)\| = 0.$

1D Denoising Problem (learn lpha, u and ξ) Ehrhardt and Roberts 2021

$$\min_{\theta} \left\{ \frac{1}{2} \sum_{i} \|\hat{x}_{i}(\theta) - x_{i}\|_{2}^{2} + \frac{\beta \kappa^{2}(\theta)}{\beta} \right\}, \quad \theta = (\alpha, \nu, \xi)$$
$$\hat{x}_{i}(\theta) = \arg\min_{z} \frac{1}{2} \|z - y_{i}\|_{2}^{2} + \alpha \left(\sum_{j} \sqrt{\|(\nabla z)_{j}\|_{2}^{2} + \nu^{2}} + \frac{\xi}{2} \|z\|_{2}^{2} \right)$$

1D Denoising Problem (learn lpha, u and ξ) Ehrhardt and Roberts 2021

$$\min_{\theta} \left\{ \frac{1}{2} \sum_{i} \|\hat{x}_{i}(\theta) - x_{i}\|_{2}^{2} + \beta \kappa^{2}(\theta) \right\}, \quad \theta = (\alpha, \nu, \xi)$$
$$\hat{x}_{i}(\theta) = \arg\min_{z} \frac{1}{2} \|z - y_{i}\|_{2}^{2} + \alpha \left(\sum_{j} \sqrt{\|(\nabla z)_{j}\|_{2}^{2} + \nu^{2}} + \frac{\xi}{2} \|z\|_{2}^{2} \right)$$

With more evaluations of $f(\theta)$, the parameter choices give better reconstructions:

Reconstruction of \hat{x}_1 after N evaluations of $f(\theta)$

1D Denoising Problem (learn α , ν and ξ) Ehrhardt and Roberts 2021

Dynamic accuracy is faster than "fixed accuracy" (at least 10x speedup):

Objective value $f(\theta)$ vs. computational effort

1D Denoising Problem Ehrhardt and Roberts 2021

Always learns the same parameter for sufficient accuracy.

Robustness to initialization

Some important works on sampling for MRI

Uninformed

- Cartesian, radial, variable density ... e.g. Lustig et al. '07
 - simple to implement
 - × not tailored to application or reconstruction method
- compressed sensing e.g. Candes and Romberg '07, Kutyniok and Lim '18
 - mathematical guarantees
 - 🗡 limited to sparse signals and sparsity promoting regularizers

Some important works on sampling for MRI

Uninformed

- Cartesian, radial, variable density ... e.g. Lustig et al. '07
 - simple to implement
 - not tailored to application or reconstruction method
- Compressed sensing e.g. Candes and Romberg '07, Kutyniok and Lim '18
 - mathematical guarantees
 - 🗡 limited to sparse signals and sparsity promoting regularizers

Learned

- ► Largest Fourier coefficients of training set Knoll et al. '11
 - simple to implement, computationally efficient
 - × not tailored to reconstruction method
- ▶ greedy: iteratively select "best" sample e.g. Gözcü et al. '18
 - ✓ adaptive to dataset, reconstruction method
 - X only discrete values; computationally heavy
- ▶ Deep learning: e.g. parameters in network Wang et al. '21
 - ✓ realistic and easy to implement sampling patterns; end-to-end
 - X limited to neural network reconstruction

Ferdia Sherry

Lower level (MRI reconstruction):

$$\hat{x}_i(\lambda, s) = \arg\min_{z} \left\{ \sum_{j=1}^{N} s_j^2 |(Fz - y_i)_j|^2 + \lambda \mathcal{R}(z) \right\} \quad s_j \in \{0, 1\}$$

Upper level (learning): Given training data $(x_i, y_i)_{i=1}^n$, solve $\min_{\substack{\lambda \ge 0, s \in \{0,1\}^m}} \frac{1}{n} \sum_{i=1}^n \|\hat{x}_i(\lambda, s) - x_i\|_2^2$

Ferdia Sherry

Lower level (MRI reconstruction):

$$\hat{x}_i(\lambda, s) = \arg\min_{z} \left\{ \sum_{j=1}^N s_j^2 |(Fz - y_i)_j|^2 + \lambda \mathcal{R}(z) \right\} \quad s_j \in \{0, 1\}$$

Upper level (learning): Given training data $(x_i, y_i)_{i=1}^n$, solve $\min_{\lambda \ge 0, s \in \{0,1\}^m} \frac{1}{n} \sum_{i=1}^n \|\hat{x}_i(\lambda, s) - x_i\|_2^2 + \beta_1 \sum_{j=1}^m s_j$

Lower level (MRI reconstruction):

$$\hat{x}_i(\lambda, s) = \arg\min_{z} \left\{ \sum_{j=1}^{N} s_j^2 |(Fz - y_i)_j|^2 + \lambda \mathcal{R}(z) \right\} \quad s_j \in \{0, 1\}$$

Upper level (learning): Given training data $(x_i, y_i)_{i=1}^n$, solve $\min_{\lambda \ge 0, s \in [0,1]^m} \frac{1}{n} \sum_{i=1}^n \|\hat{x}_i(\lambda, s) - x_i\|_2^2 + \beta_1 \sum_{j=1}^m s_j$

Ferdia Sherry

Lower level (MRI reconstruction):

$$\hat{x}_i(\lambda, s) = \arg\min_{z} \left\{ \sum_{j=1}^N s_j^2 |(Fz - y_i)_j|^2 + \lambda \mathcal{R}(z) \right\} \quad s_j \in [0, 1]$$

Upper level (learning): Given training data $(x_i, y_i)_{i=1}^n$, solve $\min_{\lambda \ge 0, s \in [0,1]^m} \frac{1}{n} \sum_{i=1}^n \|\hat{x}_i(\lambda, s) - x_i\|_2^2 + \beta_1 \sum_{j=1}^m s_j + \beta_2 \sum_{j=1}^m s_j(1-s_j)$ Lower level (MRI reconstruction):

$$\hat{x}_i(\lambda, \mathbf{s}) = \arg\min_{z} \left\{ \sum_{j=1}^{N} s_j^2 |(Fz - y_i)_j|^2 + \lambda \mathcal{R}(z) \right\} \quad s_j \in [0, 1]$$

Warm up

Figure: Discrete 2d bump

Warm up

Figure: Discrete 2d bump

(e) Learned sampling pattern

(d) Largest 2.76% Fourier Coefficients

(f) Largest 2.76% Fourier Coefficients

Increasing sparsity Sherry et al. 2020

Reminder: **Upper level** (learning)

$$\min_{\substack{\lambda \ge 0, s \in [0,1]^m}} \frac{1}{n} \sum_{i=1}^n \|\hat{x}_i(\lambda, s) - x_i^{\dagger}\|_2^2 + \beta_1 \sum_{j=1}^m s_j + \beta_2 \sum_{j=1}^m s_j(1-s_j)$$

Increasing sparsity parameter β

Compare regularizers Sherry et al. 2020

More insights: sampling and number of data Sherry et al. 2020

High resolution imaging: 1024^2 sherry et al. 2020

Conclusions

- Bilevel learning: supervised learning framework to learn parameters in variational regularization
- Optimization plays a key role in bilevel learning
 - Dynamic accuracy: no need to specify number of iterations
 - Make learning surprisingly robust
- Learned sampling better than generic sampling
 - "Optimal" sampling depends on regularizer
 - Very little data needed