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Outline

1) Motivation

minx
1
2∥Ax − y∥22+λR(x)

minx,y f (x , y)

x ∈ argminz g(z , y)

2) Efficient solution?
Yes, e.g. inexact DFO algorithms
Ehrhardt and Roberts JMIV ’21
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3) High-dimensional learning?
Yes, e.g. learn MRI sampling
Sherry et al. IEEE TMI ’20



Inverse problems and Variational Regularization

Ax = y
x : desired solution
y : observed data
A : mathematical model

Goal: recover x given y

Variational regularization
Approximate a solution x∗ of Ax = y via

x̂ ∈ argminx

{
D(Ax , y) + λR(x)

}
D data fidelity: related to noise statistics
R regularizer: penalizes unwanted features, stability

λ ≥ 0 regularization parameter: weights data and regularizer

Scherzer et al. ’08, Ito and Jin ’15, Benning and Burger ’18
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Example: Magnetic Resonance Imaging (MRI)

MRI Reconstruction Lustig et al. ’07

Fourier transform F , sampling Sw = (wi )i∈Ω

min
x

{∑
i∈Ω

|(Fx)i − y i |2 + λ∥∇x∥1
}

MRI scanner

sampling S∗y λ = 0 λ = 1

How to choose the sampling Ω? Should it depend on R and λ?
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Example: Magnetic Resonance Imaging (MRI)
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More “complicated” regularizers

min
x

1

2
∥Ax − y∥22 + α

(∑
j

∥(∇x)j∥2︸ ︷︷ ︸
=TV(x)

+
ξ

2
∥x∥22

)
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▶ Solution depends on choices of α, ν and ξ

Vary ν (α = 1, ξ = 10−3)
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How to choose all these parameters?
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Bilevel learning for inverse problems

Upper level (learning):
Given (x , y), y = Ax + ε, solve

min
λ≥0,x̂

∥x̂ − x∥22

Lower level (solve inverse problem):

x̂ ∈ argmin
z

{D(Az , y) + λR(z)}

von Stackelberg 1934, Kunisch and Pock ’13, De los Reyes and Schönlieb ’13



Bilevel learning for inverse problems

Upper level (learning):
Given (xi , yi )

n
i=1, yi = Axi + εi , solve

min
λ≥0,x̂i

1

n

n∑
i=1

∥x̂i − xi∥22

Lower level (solve inverse problem):

x̂i ∈ argmin
z

{D(Az , yi ) + λR(z)}

von Stackelberg 1934, Kunisch and Pock ’13, De los Reyes and Schönlieb ’13



Inexact Algorithms for Bilevel Learning



Bilevel learning: Reduced formulation

Upper level: min
λ,x̂

U(x̂)

Lower level:

x̂(λ) :=

x̂ = argmin
z

L(z , λ)

Reduced formulation: min
λ

U(x̂(λ)) =: Ũ(λ)

0 = ∂2
xL(x̂(λ), λ)x̂

′(λ) + ∂λ∂xL(x̂(λ), λ) ⇔ x̂ ′(λ) = −B−1A

∇Ũ(λ) = (x̂ ′(λ))∗∇U(x̂(λ)) = −A∗w

where w solves Bw = ∇U(x̂(λ)).
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Algorithm for Bilevel learning

Reduced formulation: minλ U(x̂(λ)) =: Ũ(λ)

▶ Compute gradients: Given λ

(1) Compute x̂(λ), e.g. via PDHG Chambolle and Pock ’11

(2) Solve Bw = ∇U(x̂(λ)), B := ∂2
xL(x̂(λ), λ) e.g. via CG

(3) Compute ∇Ũ(λ) = −A∗w , A := ∂λ∂xL(x̂(λ), λ)

▶ Solve reduced formulation via L-BFGS-B Nocedal and Wright ’00

This approach has a number of problems:

▶ x̂(λ) has to be computed

▶ Derivative assumes x̂(λ) is exact minimizer

▶ Large system of linear equations has to be solved
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How to solve Bilevel Learning Problems?

▶ Ignore “problems”, just compute it. e.g. Sherry et al. ’20

▶ Semi-smooth Newton: similar problems Kunisch and Pock ’13

▶ Replace lower level problem by finite number of iterations of
algorithms: not bilevel anymore Ochs et al. ’15

Use algorithm that acknowledges difficulties:
e.g. inexact DFO Ehrhardt and Roberts ’21

Lindon Roberts



Dynamic Accuracy Derivative Free Optimization

min
θ

f (θ)

Key idea: Use fϵ:
|f (θ)− fϵ(θ)| < ϵ

Accuracy as low as possible, but as high as necessary.

E.g. if
fϵk+1(θk+1) < fϵk (θ

k)− ϵk − ϵk+1,

then
f (θk+1) < f (θk)



Dynamic Accuracy Derivative Free Optimization

min
θ

f (θ)

For k = 0, 1, 2, . . .

1) Sample fϵk in a neighbourhood of θk

2) Build model mk(θ) ≈ fϵk

3) Minimise mk around θk to get θk+1

4) If model decrease is sufficient compared
to function error: accept step

Theorem Ehrhardt and Roberts ’21

If f is sufficiently smooth and bounded below, then the
algorithm is globally convergent in the sense that

lim
k→∞

∥∇f (θk)∥ = 0 .



1D Denoising Problem (learn α, ν and ξ) Ehrhardt and Roberts ’21

min
θ

{
1

2

∑
i

∥x̂i (θ)− xi∥22 + βκ2(θ)

}
, θ = (α, ν, ξ)

x̂i (θ) = argmin
z

1

2
∥z − yi∥22 + α

(∑
j

√
∥(∇z)j∥22 + ν2 +

ξ

2
∥z∥22

)
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1D Denoising Problem (learn α, ν and ξ) Ehrhardt and Roberts ’21

Dynamic accuracy is faster than “fixed accuracy”: 10x speedup:
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Objective value f (θ) vs. computational effort



1D Denoising Problem Ehrhardt and Roberts ’21

Always learns the same parameter for sufficient accuracy.

Robustness to initialization



Learn sampling pattern in MRI



Learn sampling pattern in MRI

Upper level (learning):
Given training data (xi , yi )

n
i=1, solve

min
λ≥0,s∈{0,1}m

1

n

n∑
i=1

∥x̂i (λ, s)− xi∥22+β1

m∑
j=1

sj

+β2

m∑
j=1

sj(1− sj)

Lower level (MRI reconstruction):

x̂i (λ, s) = argmin
z


N∑
j=1

s2j |(Fz − yi )j |2 + λR(z)

 sj ∈ {0, 1}

Sherry et al. ’20

Ferdia Sherry
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Ferdia Sherry



Warm up



Warm up



Compare regularizers Sherry et al. ’20



More insights: sampling and number of data Sherry et al. ’20



High resolution imaging: 10242 Sherry et al. ’20



Conclusions

▶ Bilevel learning: supervised learning for variational
regularization

▶ Accuracy in the optimization algorithm is important

▶ High-dimensional parametrizations can be learned


