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Outline
1) Motivation
’ s 1
m|nX2||Ax y|I3+AR(x)

miny , f(x,y)

x € argmin; g(z,y)

2) Efficient solution?
Yes, e.g. inexact DFO algorithms = |\ |
Ehrhardt and Roberts JMIV '21 - R e Y

3) High-dimensional learning?
Yes, e.g. learn MRI sampling
Sherry et al. IEEE TMI '20




Inverse problems and Variational Regularization

Ax =y
x : desired solution

y . observed data
A : mathematical model

Goal: recover X given Y/



Inverse problems and Variational Regularization

Ax =y
x : desired solution

y . observed data
A : mathematical model

Goal: recover X given Y/

Variational regularization
Approximate a solution x* of Ax = y via

% € argmin, s D(Ax, y) + \R(x)

D data fidelity: related to noise statistics
R regularizer: penalizes unwanted features, stability
A > 0 regularization parameter: weights data and regularizer

Scherzer et al. '08, Ito and Jin '15, Benning and Burger '18



Example: Magnetic Resonance Imaging (MRI)

MRI Reconstruction Lustig et al. '07
Fourier transform F, sampling Sw = (w;);cq

min{ 3 (720 = i + M9l
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sampling S*y A=0
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Example: Magnetic Resonance Imaging (MRI)

MRI Reconstruction Lustig et al. '07
Fourier transform F, sampling Sw = (w;);cq

mind S 1(F); = i+ I }

i€Q

sampling S*y A=0 A=10"3
How to choose the sampling 27 Should it depend on R and A7



More “complicated” regularizers
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More “complicated” regularizers

1 3
mxmzqu—y||§+a<z u<vX>ju§+u2+2||x||%)
J

~TV(x)

» Smooth and strongly convex
» Solution depends on choices of «, v and &

Vary v (=1, £ =1073) Vary € (=1, v =1073)

= I SN =yl i Nl

v =001 v=01 v=1 £=001 £=01 =1
o = s 100 150 200 20

How to choose all these parameters?



Bilevel learning for inverse problems
Upper level (learning):
Given (x,y),y = Ax + ¢, solve

Cle  olI2
ol [Pe= =5

b

Lower level (solve inverse problem):

% € argmin{D(Az,y) + \R(z)}

von Stackelberg 1934, Kunisch and Pock '13, De los Reyes and Schénlieb '13



Bilevel learning for inverse problems

Upper level (learning):
Given (xi,yi)l_q,vi = Ax; + ¢, solve

- 2
A@(I)nx, ZHXI xil

Lower level (solve inverse problem):
% € argmin{D(Az,y;) + \R(z)}

von Stackelberg 1934, Kunisch and Pock '13, De los Reyes and Schénlieb 13
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Inexact Algorithms for Bilevel Learning



Bilevel learning: Reduced formulation
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Bilevel learning: Reduced formulation

Upper level: min U(X)

Lower level:
X(A):= % =argminL(z, )

Reduced formulation: min U(%(\)) =: U()\)
)y

0= D2L(R(\), )& (\) + 0n0xL(2(N),\) & £(\)=-BlA

VO = (F(\)*VU(R(N) = —A*w

where w solves Bw = VU(%()\)).



Algorithm for Bilevel learning

Reduced formulation: miny U(%(\)) =: U()\)

» Compute gradients: Given A

(1) Compute %(\), e.g. via PDHG Chambolle and Pock '11
(2) Solve Bw = VU(X())), B := 02L(X()), \) e.g. via CG
(3) Compute VU(X) = —A*w, A= 0x\0xL(X(N), )

» Solve reduced formulation via L-BFGS-B Nocedal and Wright '00



Algorithm for Bilevel learning

Reduced formulation: miny U(%(\)) =: U()\)

» Compute gradients: Given A

(1) Compute %(\), e.g. via PDHG Chambolle and Pock '11
(2) Solve Bw = VU(X())), B := 02L(X()), \) e.g. via CG
(3) Compute VU(X) = —A*w, A= 0x\0xL(X(N), )

» Solve reduced formulation via L-BFGS-B Nocedal and Wright '00

This approach has a number of problems:
» X(A) has to be computed
» Derivative assumes X(\) is exact minimizer

» Large system of linear equations has to be solved



How to solve Bilevel Learning Problems?

P Ignore “problems”, just compute it. e.g. Sherry et al. '20
» Semi-smooth Newton: similar problems Kunisch and Pock '13

» Replace lower level problem by finite number of iterations of
algorithms: not bilevel anymore Ochs et al. '15

Use algorithm that acknowledges difficulties:
e.g. inexact DFO Ehrhardt and Roberts '21

Lindon Roberts



Dynamic Accuracy Derivative Free Optimization

ngn f(6)
Key idea: Use f.:
£(0) — £(0)] <€
Accuracy as low as possible, but as high as necessary.

Eg if
frea(05FY) < Fu(0%) — €k — L,

then
F(Ox1) < £(6%)



Dynamic Accuracy Derivative Free Optimization

main f(6)

For k=0,1,2,...
1) Sample £« in a neighbourhood of 6
2) Build model my(0) ~ fu

3) Minimise my around 6 to get 0y
)

4) If model decrease is sufficient compared

to function error: accept step

Theorem Ehrhardt and Roberts '21

Algorithm 1 Dynamic accuracy DFO algorithm for (22)
€R", 1} <A<

Amas.
Parameters: strictly positive values Amax. Yce. Vinc, 71 72, 7} €
salisfying yaee < 1< yine, 1 < m < 1,and 0 < min(y, 1 —
m)/2

1: Select an arbitrary interpolation set and construct m® (26).

2 fork=0,1.2,...do

3 repeat

4 Evaluate 7(0) to sufficient accuracy that (32) holds with
(using s* from the previous iteration o this inner repeat/until loop).
Do nothing in the first iteration of this repeatiuntil loop.

s: if [|g*]| < ¢ then

6: By replacing A* with yj A" fori = 0,1,2,..., find m*
and A* such that m* is fully linear in B(6*, A¥) and A* < ||g*||
[eriticality phase]

7

Calculate s* by (approximately) solving (27).

9: until the accuracy in the evaluation of 7(6%) satisfies (32) with
" laccuracy phase]

10: Evaluate?(6*-+5) sothat (32)issatisfied with ] for 7(6%+s%),
and calculate 3* (29).

11 Setgk+! and AFH as

Ot 7 mor 7tz m andmt
i fully inar in B, a%), @3
o*, otherwise,

and

min(yecA”, Amax), 7 = n2,
£ * x
JReTI I 7 < ma and m* not 64
fully linear inB(0*, AY),
YaeelF, otherwise.

121 Ife**! = 0* 4 5*, then build m**! by adding 6**" to the inter-
polation et (removing an existing poin). Otherwise, setm*+! = m*
ifm is fully linear in B(6*, A*), or form m**! by making m* fully
linear in B(94+1, Ak+)

13: end for

If f is sufficiently smooth and bounded below, then the
algorithm is globally convergent in the sense that

IVF(0)]l = 0.

lim
k—o0



1D Denoising Problem (learn «, v and &) Eehrhard and Roberts "21
1
m9|n{22]|>?,(9)—x,||§+[)’/§2(0)}, 9:(0471/75)

X 1 ¢
5(0) = arg min 2nz—y,-||%+a<§j ||(Vz)ju3+v2+2uz||%>
Jj

N =20 N =100

Reconstruction of X; after N evaluations of 7(0)



1D Denoising Problem (learn «, v and &) Eehrhard and Roberts "21

Dynamic accuracy is faster than “fixed accuracy”: 10x speedup:

10%
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Lower-level problem iterations

Objective value f(f) vs. computational effort



1D Denoising Problem enrhardt and Roberts 21

Always learns the same parameter for sufficient accuracy.

102
3 GD 1,000
s 1 GD 10,000
= 10! E === Dynamic GD
A ] FISTA 200
= oo ] — - FISTA 2,000
E =« Dynamic FISTA
I | LR | LA | LA | IR |
102 10—t 10° 10t 102
Initial ag

Robustness to initialization



Learn sampling pattern in MRI



Learn sampling pattern in MRI

Upper level (learning):
Given training data (x;, y;)?_,, solve

. 1 n . m
min = [|%(), 5) = xil5+51 D s
i=1 =

Ferdia Sherry

A>0,5€{0,1}™ n
Lower level (MRI reconstruction):

N
Xi(A,s) = arg mzin 251-2|(Fz —y)il> + \R(2) s;€{0,1}
j=1

Sherry et al. '20



Learn sampling pattern in MRI

Upper level (learning):
Given training data (x;, y;)?_,, solve

. 1
min =
A>0,s€[0,1]™ N

Ferdia Sherry

n m m
D NI&A ) = xill3+BL Y s8> si(1—s)
i=1 = j=1

Lower level (MRI reconstruction):

N
Ri(A\,s) = arg min Zsﬂ(Fz —y)il? + \R(z2) sj € [0,1]
j=1

Sherry et al. '20



Figure: Discrete 2d bump

(c) Learned sampling pattern (d) Largest 2.76% Fourier Coefficients



Figure: Discrete 2d bump (a) Original data: log |y|

) Learned sampling pattern

oo

(e) Learned sampling pattern (f) Largest 2.76% Fourier Coefficients




Compare regularizers sherry et al. 20

A9 1..; T

().929

131.6

TV regularisation  Wavelet regularisation

o

Estimated probability

Position along the chosen slice in k-space



More insights: sampling and number of data sherry et al. 20
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Image quality SSIM —e—



High resolution imaging: 10242 shemy et al. 20




Conclusions

> Bilevel learning: supervised learning for variational
regularization

» Accuracy in the optimization algorithm is important

» High-dimensional parametrizations can be learned



