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Outline

1) Motivation

minx
1
2∥Ax − y∥22+λR(x)

minx,y f (x , y)

x ∈ argminz g(z , y)

2) Efficient solution?
Yes, e.g. inexact DFO algorithms
Ehrhardt and Roberts JMIV ’21
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3) High-dimensional learning?
Yes, e.g. learn MRI sampling
Sherry et al. IEEE TMI ’20



Inverse problems and Variational Regularization

Ax = y
x : desired solution
y : observed data
A : mathematical model

Goal: recover x given y

Variational regularization
Approximate a solution x∗ of Ax = y via

x̂ ∈ argminx

{
D(Ax , y) + λR(x)

}
D data fidelity: related to noise statistics
R regularizer: penalizes unwanted features, stability

λ ≥ 0 regularization parameter: weights data and regularizer

Scherzer et al. ’08, Ito and Jin ’15, Benning and Burger ’18
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Example: Magnetic Resonance Imaging (MRI)

MRI Reconstruction Lustig et al. ’07

Fourier transform F , sampling Sw = (wi )i∈Ω

min
x

{∑
i∈Ω

|(Fx)i − y i |2 + λ∥∇x∥1
}

MRI scanner

sampling S∗y λ = 0 λ = 1

How to choose the sampling Ω? Should it depend on R and λ?
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Example: Magnetic Resonance Imaging (MRI)
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More “complicated” regularizers

min
x

1

2
∥Ax − y∥22 + α

(∑
j

∥(∇x)j∥2︸ ︷︷ ︸
=TV(x)

+
ξ

2
∥x∥22

)

0 50 100 150 200 250

0.0

0.5

1.0

Noisy Image

True Image

True Image

Denoised

▶ Smooth and strongly convex

▶ Solution depends on choices of α, ν and ξ

Vary ν (α = 1, ξ = 10−3)
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How to choose all these parameters?
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Motivation

▶ Solve inverse problems via variational regularization

▶ Many parameters
▶ Low level: regularization parameter, smoothness, strong

convexity, ...
▶ High level: sampling, regularizer, ...

▶ Some parameters have underlying theory and heuristics but
generally difficult to choose in practice



Bilevel learning for inverse problems

Upper level (learning):
Given (x , y), y = Ax + ε, solve

min
λ≥0,x̂

∥x̂ − x∥22

Lower level (solve inverse problem):

x̂ ∈ argmin
z

{D(Az , y) + λR(z)}

von Stackelberg 1934, Kunisch and Pock ’13, De los Reyes and Schönlieb ’13



Bilevel learning for inverse problems

Upper level (learning):
Given (xi , yi )

n
i=1, yi = Axi + εi , solve

min
λ≥0,x̂i

1

n

n∑
i=1

∥x̂i − xi∥22

Lower level (solve inverse problem):

x̂i ∈ argmin
z

{D(Az , yi ) + λR(z)}

von Stackelberg 1934, Kunisch and Pock ’13, De los Reyes and Schönlieb ’13



Inexact Algorithms for Bilevel Learning



Bilevel learning: Reduced formulation

Upper level: min
λ,x̂

U(x̂)

Lower level:

x̂(λ) :=

x̂ = argmin
z

L(z , λ)

Reduced formulation: min
λ

U(x̂(λ)) =: Ũ(λ)

0 = ∂2
xL(x̂(λ), λ)x̂

′(λ) + ∂λ∂xL(x̂(λ), λ) ⇔ x̂ ′(λ) = −B−1A

∇Ũ(λ) = (x̂ ′(λ))∗∇U(x̂(λ)) = −A∗w

where w solves Bw = ∇U(x̂(λ)).
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Algorithm for Bilevel learning

Reduced formulation: minλ U(x̂(λ)) =: Ũ(λ)

▶ Compute gradients: Given λ

(1) Compute x̂(λ), e.g. via PDHG Chambolle and Pock ’11

(2) Solve Bw = ∇U(x̂(λ)), B := ∂2
xL(x̂(λ), λ) e.g. via CG

(3) Compute ∇Ũ(λ) = −A∗w , A := ∂λ∂xL(x̂(λ), λ)

▶ Solve reduced formulation via L-BFGS-B Nocedal and Wright ’00

This approach has a number of problems:

▶ x̂(λ) has to be computed

▶ Derivative assumes x̂(λ) is exact minimizer

▶ Large system of linear equations has to be solved
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(3) Compute ∇Ũ(λ) = −A∗w , A := ∂λ∂xL(x̂(λ), λ)

▶ Solve reduced formulation via L-BFGS-B Nocedal and Wright ’00

This approach has a number of problems:

▶ x̂(λ) has to be computed

▶ Derivative assumes x̂(λ) is exact minimizer

▶ Large system of linear equations has to be solved



How to solve Bilevel Learning Problems?

▶ Ignore “problems”, just compute it. e.g. Sherry et al. ’20

▶ Semi-smooth Newton: similar problems Kunisch and Pock ’13

▶ Replace lower level problem by finite number of iterations of
algorithms: not bilevel anymore Ochs et al. ’15

Use algorithm that acknowledges difficulties:
e.g. inexact DFO Ehrhardt and Roberts ’21

Lindon Roberts



Dynamic Accuracy Derivative Free Optimization

min
θ

f (θ)

Key idea: Use fϵ:
|f (θ)− fϵ(θ)| < ϵ

Accuracy as low as possible, but as high as necessary.

E.g. if
fϵk+1(θk+1) < fϵk (θ

k)− ϵk − ϵk+1,

then
f (θk+1) < f (θk)



Dynamic Accuracy Derivative Free Optimization

min
θ

f (θ)

For k = 0, 1, 2, . . .

1) Sample fϵk in a neighbourhood of θk

2) Build model mk(θ) ≈ fϵk

3) Minimise mk around θk to get θk+1

4) If model decrease is sufficient compared
to function error: accept step

Theorem Ehrhardt and Roberts ’21

If f is sufficiently smooth and bounded below, then the
algorithm is globally convergent in the sense that

lim
k→∞

∥∇f (θk)∥ = 0 .



Denoising (learn α, ν and ξ) Ehrhardt and Roberts ’21

min
θ=(α,ν,ξ)

{
1

2

∑
i

∥x̂i (θ)− xi∥22 + βκ2(θ)

}
, κ(θ) = 1 +

α∥∇∥2

ν(1 + ξ)

x̂i (θ) = argmin
z

1

2
∥z − yi∥22 + α

(∑
j

√
∥(∇z)j∥22 + ν2 +

ξ

2
∥z∥22

)
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Robustness to initialization etc

Compare:

▶ proposed dynamic accuracy approach Ehrhardt and Roberts ’21

▶ unrolling: lower-level solution ≈ fixed number of iterations
Ochs et al. ’15

▶ unrolling not robust to number of iterations

▶ unrolling with large number of iterations and dynamic
accuracy are robust to initialization
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Dynamic Accuracy v Fixed Unrolling

Compare:

▶ proposed dynamic accuracy approach Ehrhardt and Roberts ’21

▶ lower-level solution ≈ fixed number of iterations Ochs et al. ’16’
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Objective value f (θ) vs. computational effort

Dynamic accuracy is faster: 10x speedup



Learn sampling pattern in MRI



Learn sampling pattern in MRI

Upper level (learning):
Given training data (xi , yi )

n
i=1, solve

min
λ≥0,s∈{0,1}m

1

n

n∑
i=1

∥x̂i (λ, s)− xi∥22+β1

m∑
j=1

sj

+β2

m∑
j=1

sj(1− sj)

Lower level (MRI reconstruction):

x̂i (λ, s) = argmin
z


N∑
j=1

s2j |(Fz − yi )j |2 + λR(z)

 sj ∈ {0, 1}

Sherry et al. ’20

Ferdia Sherry
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Warm up



Warm up



Compare regularizers Sherry et al. ’20



More insights: sampling and number of data Sherry et al. ’20



High resolution imaging: 10242 Sherry et al. ’20



Conclusions

▶ Bilevel learning: supervised learning for variational
regularization

▶ Accuracy in the optimization algorithm is important

▶ High-dimensional parametrizations can be learned

PostDoc Vacancy
≈ 3 year position, starting in
September 2022 or soon after
deadline tomorrow!
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