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Notation: Neural Network
Define neural network Φθ : X → Y recursively: Φθ(x) = zK

z0 = x ∈ X

zk+1 = f k(zk , θk), k = 0, . . . ,K − 1

with generic layers

f k : Z k ×Θk → Z k+1, k = 0, . . . ,K − 1

▶ Classical, fully-connected layer defined by

f : RM × (RM′×M × RM′
) → RM′

(z , (A, b)) 7→ σ(Az + b),

where σ is an element-wise nonlinearity (ReLU, tanh etc.)
▶ A is often replaced by a convolutional operator
▶ Training goal: dataset {(xn, yn)}n

min
θ∈Θ

1

N

N∑
n=1

L(Φθ(xn), yn) + R(θ)



Deep Learning and Robustness
▶ Deep learning often is not robust (e.g. noise, rotations, ...)

https://ai.googleblog.com/2018/09/introducing-unrestricted-adversarial.html

▶ Data augmentation ...

▶ Our approach: Design deep learning architectures with
mathematical guarantees (e.g. stability, equivariance,
invertibility, manifolds, ...)

https://ai.googleblog.com/2018/09/introducing-unrestricted-adversarial.html


Residual networks as discretised ODEs

▶ “Standard” Neural Networks

zk+1 = σ(Akzk + bk)

▶ Deep Residual Neural Networks
(ResNet) He, Zhang, Ren, Sun 2015

(> 85000 citations on GoogleScholar)

zk+1 = zk +∆t σ(Akzk + bk)

ResNet is Forward Euler discretization ż(t) ≈ z(t+∆t)−z(t)
∆t of

ż(t) = σ(A(t)z(t) + b(t)), t ∈ [0,T ]

with continuous-time mappings A, b. zk := z(k∆t) ...

Haber and Ruthotto 2018; Li et al. 2018, Benning et al. 2019



ResNet in action



Interpretation as discrete optimal control
The deep learning problem can be seen as the discretization of

Optimal control problem

min
θ

1

N

N∑
n=1

L(zn(T ), yn)

subject to
żn = f (zn, θ), zn(0) = xn ∈ X .

Why is the optimal control point of view useful:
▶ it states the deep learning problem in two lines
▶ can be used to create new architectures
▶ continuous models are useful simplifications of reality,

amenable for analysis
▶ what ODE properties carry over to discrete neural networks?

Haber and Ruthotto 2018; Li et al. 2018, Benning et al. 2019



What happens when images are rotated?

Φ(y) = x
Training data
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CT Results

Equivariant improves upon Ordinary:
▶ higher SSIM and PSNR
▶ fewer artefacts and finer details
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CT Results

▶ Equivariant improves upon Ordinary on small training sets
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Take Away Messages

▶ Continuum modelling of neural networks opens the toolbox
of mathematical and numerical analysis

▶ Connections of deep learning to ODEs, optimal control,
group theory ...

▶ Design of neural networks with certain structure: stability,
equivariance, invertibility, manifolds, ...
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