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Inverse problems

Au = b
u : desired solution

b : observed data

A : mathematical model

Goal: recover u given b
▶ MRI: Fourier transform Au(k) =

∫
u(x) exp(−ikx)dx

→



Inverse problems

Au = b
u : desired solution

b : observed data

A : mathematical model

Goal: recover u given b
▶ CT: Radon / X-ray transform Au(L) =

∫
L u(x)dx

→



What is the problem with Inverse Problems?
A solution may

▶ not exist: define generalized solution (e.g. least squares)

▶ not be unique: select one via a-priori information (e.g. MRI)
▶ be sensitive to noise: (e.g. CT, PET)

- Positron Emission Tomography (PET)
- Solve Au = b (data: MacMillan Cancer Centre London)

→

▶ Option 1: Analytical methods

▶ Option 2: Variational regularization

▶ Option 3∗: Iterative regularization

▶ Option 4∗: Bayesian methods
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Option 1: Analytical methods

Au = b, Φλ : b 7→ u
▶ Find formula Φλ, e.g. in MRI zero-filled reconstruction,

sum-of-squares, in CT or PET filtered backprojection

▶ Often: Φ0 = A†

Pros:

▶ very fast!

Cons:

▶ limited modelling options: forward operator

▶ need high-quality data: e.g. (close to) injective

▶ difficult to use a-priori information: e.g. nonnegativity or
smoothness

Hardly used when image quality is important (except CT)



Option 2: Variational regularization

Φλ(b) = argminu
{
D(Au, b) + λR(u)

}
D measures fidelity between Au and b, related to noise statistics

R regularizer penalizes unwanted features and ensures stability;
e.g. TV Rudin, Osher, Fatimi ’92 R(u) = ∥∇u∥1,
TGV Bredies, Kunisch, Pock ’10 R(u) = infv ∥∇u − v∥1 + β∥∇v∥1

λ ≥ 0 regularization parameter balances fidelity and regularization



Option 2: Variational regularization (cont)

Φλ(b) = argminu
{
D(Au, b) + λR(u)

}
▶ Only theoretical. Need to find algorithm (uk) such that

Φλ(b) := limk→∞ uk

▶ Proximal Gradient Descent / Forward-Backward Splitting
Bauschke and Combettes ’11, Beck ’17 ...

uk+1 = proxτkλR(u
k − τk∇E(uk))

E(u) = D(Au, b)

proximal operator Moreau ’62

proxf (z) := argmin
u

{
1

2
∥u − z∥2 + f (u)

}
Iterate: fit data, denoise



Option 2: Variational regularization (cont)

Φλ(b) = argminu
{
D(Au, b) + λR(u)

}
Pros:

▶ good modelling: forward operator, data fit and regularizer
provide a lot of freedom

▶ data quality can be poor if exploiting a-priori knowledge

▶ a lof of theory available

Cons:

▶ difficult to choose regularisation parameter λ

▶ slow: many evaluations of A and A∗ ongoing research

▶ modelling simple: TV, TGV work great on geometric
phantoms, room for improvement for real data

difficult to include more data: what does a typical reconstruction
look like?



Machine Learning meets Inverse Problems
(i.e. mostly deep learning)



“Analytic methods” meet Deep Learning
▶ automap Zhu et al. ’18, Nature paper with 1600+ citations

▶ ignore physical modelling (i.e. A)

Φ(b) = Nθ(b)

▶ learned postprocessing, e.g. Jin et al. ’17, 2000+ citations
▶ rough recon with physical model, then apply neural network

▶ unrolling, e.g. Gregor and Le Cun ’10, Adler and Öktem ’17

▶ take few iterations of algorithm and replace prox with neural
network
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▶ take few iterations of algorithm and replace prox with neural
network



“Analytic methods” meet Deep Learning
▶ automap Zhu et al. ’18, Nature paper with 1600+ citations

▶ ignore physical modelling (i.e. A) Φ(b) = Nθ(b)

▶ learned postprocessing, e.g. Jin et al. ’17, 2000+ citations
▶ rough recon with physical model, then apply neural network

Φ(b) = Nθ(A
†b)

▶ unrolling, e.g. Gregor and Le Cun ’10, Adler and Öktem ’17
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“Analytic methods” meet Deep Learning
▶ automap Zhu et al. ’18, Nature paper with 1600+ citations

▶ ignore physical modelling (i.e. A) Φ(b) = Nθ(b)
▶ learned postprocessing, e.g. Jin et al. ’17, 2000+ citations

▶ rough recon with physical model, then apply neural network
Φ(b) = Nθ(A

†b)
▶ unrolling, e.g. Gregor and Le Cun ’10, Adler and Öktem ’17

▶ take few iterations of algorithm and replace prox with neural
network Φ(b) = uK , uk+1 = N k

θ (u
k − τk∇E(uk))

Not as stable as pre-deep learning approaches Antun et al. ’19



Variational regularization meets Deep Learning
Idea: learn a regularizer Rθ for variational regularization

▶ Exploit pretrained network, e.g. denoiser Romano et al. ’17

R(u) =
1

2
uT (u −Nθ(u))

▶ Train directly before reconstruction, e.g.
▶ if “good” images (uk) and and “bad” images (vk) are available

Benning et al. ’17, choose parameters θ to minimize

EuRθ(u)− EvRθ(v)

Connected to Wasserstein distance between (uk) and (vk) if
Rθ is 1-Lipschitz Lunz et al. ’19, e.g. v = A†b.

▶ input-convex neural networks Mukherjee et al. ’20

▶ Train for reconstruction, e.g. bilevel learning:

min
θ

Eu∗,b∥Φθ(b)− u∗∥2 Φθ(b) = argmin
u

{D(Au, b) + Rθ(u)}
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Summary

What to learn? I.e. network architecture

▶ deep learning and inverse problems can be combined in
various ways

▶ directly using the network (“analytic” methods) can be
unstable

▶ incorporating more structure (e.g. variational regularization)
or information (e.g. A) makes the approach more stable and
needs less data

What to learn from? I.e. training data

▶ Supervised: end-to-end, bilevel learning (u∗i , bi ), potentially
using A

▶ Unsupervised: (u∗i ), negative examples (vi )

▶ Semi-Supervised: (u∗i ), (bi ), potentially using A



Regularization with Generative Models



Generative Regularizers

Image by Hu et al. ’20

▶ Given a generative model Gθ : Z → U (e.g. AE, VAE, GAN), one can
define a generative regularizer Duff et al. JMIV ’23, e.g.

R(u) = inf
z

{
1

2
∥u − Gθ(z)∥22 + S(z)

}
▶ A variant with hard constraints has been used in Bora et al. ’17

R(u) = inf
z
ι{0}(u − Gθ(z))

▶ In both cases: only the mean is modelled



Modelling the Covariance Duff et al. PMB ’23

▶ Motivated by Dorta et al. ’18, we use the regularizer

R(u) = inf
z

{
log det(Σ(z)) +

1

2
∥u − G (z)∥2Σ−1(z) +

1

2
∥z∥22

}
This is related to u ∝ N (G (z),Σ(z)) and z ∝ N (0, I ).

Margaret Duff

▶ Visualization of learned positive and negative covariance.



Example: Magnetic Resonance Imaging (MRI)

MRI Reconstruction
Fourier transform F , sampling Sw = (wi )i∈Ω

min
u

{∑
i∈Ω

|(Fu)i − bi |2
}

MRI scanner

sampling S∗y minimizer



Comparison: Covariance Models
▶ constant diagonal (identity)

▶ varying diagonal (diagonal)

▶ proposed (covar)
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▶ In any case, the proposed model appears superior.



Comparison: End-to-end Learning
▶ Compare to Variational Network (VN) Hammernik et al. ’18

trained for specific sampling and noise (indicated in red).
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Comparison: End-to-end Learning (cont)
Compare to Variational Network (VN) Hammernik et al. ’18 trained for
specific sampling and noise (dashed lines).
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▶ Similar peak performance but proposed model generalizes
better to unseen settings.



Comparison: Other unsupervised methods
▶ Compare to Bora et al. ’17 (Range) which restricts to the range.
▶ Compare to Narnhofer et al. ’19 which uses an Inverse GAN.
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▶ Bora et al. ’17, Narnhofer et al. ’19 produce smoother solutions.



Comparison: Other unsupervised methods (cont)

▶ Compare to Bora et al. ’17 (Range) which restricts to the range.

▶ Compare to Narnhofer et al. ’19 which uses an Inverse GAN.
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▶ Better than Bora et al. ’17. Similar to Narnhofer et al. ’19.



Equivariance and Inverse Problems



What happens when data is rotated?

Example: R rotation, Φ denoising network

Φ(Rb)
?
= RΦ(b)

Ferdia Sherry

Training data

Clean Noisy Ordinary Equivariant

Clean Noisy Ordinary Equivariant

Horizontal training example

Vertical testing example

noisy CNN proposed

Test data

Clean Noisy Ordinary Equivariant

Clean Noisy Ordinary Equivariant

Horizontal training example

Vertical testing example

noisy CNN proposed
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How to get “equivariant” mappings?

Φ(Rb) = RΦ(b)
▶ equivariance by learning: e.g. data augmentation (bi , ui )i

becomes (Ribi ,Riui )i
✓ simple to implement for image-based tasks (e.g. denoising,

image segmentation etc)

✗ potentially computationally costly: larger training data
✗ no guarantees to generalize to test data
✗ not always easy/possible (for inverse problems only viable in

simulations or if data is not paired)

▶ equivariance by design
✓ mathematical guarantees
✗ not trivial to do

Provable equivariant neural networks have been studied a lot
for segmentation, classification, denoising etc
Bekkers et al. ’18, Weiler and Cesa ’19, Cohen and Welling ’16, Dieleman et al.

’16, Sosnovik et al. ’19, Worall and Welling ’19, ...
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Equivariance and inverse problems

▶ inverse problem Au = b, solution operator: Φ : Y → X

▶ Hope Φ ◦ A is equivariant, e.g. R ◦ Φ ◦ A = Φ ◦ A ◦ R

▶ Φ ◦ A generally not equivariant. TV inpainting

R

A

A

Φ

Φ

R

6=



Equivariance and inverse problems

▶ inverse problem Au = b, solution operator: Φ : Y → X

▶ Hope Φ ◦ A is equivariant, e.g. R ◦ Φ ◦ A = Φ ◦ A ◦ R

▶ Φ ◦ A generally not equivariant. TV inpainting

R

A

A

Φ

Φ

R

6=



Group acting on images

▶ Example groups (image from Chen et al. ’23):

▶ G = Rn ⋊ H, H subgroup of the general linear group GL(n)

▶ g · x = Rx + t, g = (t,R) ∈ G , t ∈ Rn,R ∈ H

▶ (g · u)(x) = u(R−1(x − t))

This includes Weiler and Cesa ’19

▶ Translations: H = {e}
▶ Roto-Translations: H = SO(n)

▶ Finite Roto-Translations H = ZM (finite subgroup of SO(n))



Invariant functional implies equivariant prox

Theorem Celledoni et al. ’21

Let X = L2(Ω), J invariant: J(g · u) = J(u). Then proxJ is
equivariant, i.e. for all u ∈ X

proxJ(g · u) = g · proxJ(u).

▶ Total variation (and higher order variants) is invariant to rigid
motion

▶ Natural condition on networks for unrolled algorithms



How to construct equivariant networks?
Proposition Let G be any group and Φ and Ψ equivariant.

▶ The composition Φ ◦Ψ is equivariant.

▶ The sum Φ+Ψ is equivariant.

▶ The identity u 7→ u is equivariant.

Next slide There are non-trivial G -equivariant linear operators.

Proposition Let G be any group and (Φu)(x) = u(x) + b(x). Φ
is equivariant if b is invariant, i.e. g · b = b.

Proposition There are G -equivariant nonlinearities.

Construct G -equivariant neural networks the usual way:

▶ layers Φ = Φn ◦ · · · ◦ Φ1

▶ Φ(u) = σ(Au + b)

▶ ResNet Φ(u) = u + σ(Au + b)



Equivariant linear functions (πX ≡ id)

In a nutshell: Linear G -equivariant operators are convolutions
with a kernel satisfying an additional constraint.

Theorem paraphrasing e.g. Weiler and Cesa ’19

Let X ,Y be function spaces, e.g. X = L2(Rn,Rm),
Y = L2(Rn,RM). The linear operator Φ : X → Y ,

Φf (x) =

∫
K (x , y)f (y)dy

with K : Rn → RM×m is G -equivariant iff there is a k such that

Φf (x) =

∫
k(x − y)f (y)dy

and k is H-invariant, i.e. for all R ∈ H, x ∈ Rn: k(Rx) = k(x).



CT Results
▶ LIDC-IDRI data set, 5000+200+1000 images, 50 views
▶ Equivariant = roto-translations; Ordinary = translations
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▶ higher SSIM and PSNR
▶ fewer artefacts and finer details



CT Results Celledoni et al., Inverse Problems, ’21.

Equivariant = roto-translations; Ordinary = translations

Equivariant improves upon Ordinary:
▶ small training sets
▶ unseen orientations

10 100 1000
Training set size N

24

26

28

30

32

34

36

P
S

N
R

Upright test images

Equivariant

Ordinary

10 100 1000
Training set size N

24

26

28

30

32

34

36

P
S

N
R

Rotated test images

Equivariant

Ordinary

Generalisation performance of the learned methods



Conclusions

▶ Generative regularizers: modelling of prior correlations
▶ Unsupervised model: no paired data required
▶ Learning independent of inverse problem: generalization

▶ Exploiting equivariance
▶ natural condition when proximal operators are replaced
▶ needs less data
▶ no extra computational cost at test time


