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Inverse Problems and how to solve them



Inverse problems

Au = b
u : desired solution

b : observed data

A : mathematical model

Goal: recover u given b
▶ CT: Radon / X-ray transform Au(L) =

∫
L u(x)dx

→



What is the problem with Inverse Problems?

A solution may

▶ not exist: define generalized solution (e.g. least squares)

▶ not be unique: select one via a-priori information
▶ be sensitive to noise:

- Positron Emission Tomography (PET)
- Data: PET scanner in London
- Model: ray transform, Au(L) =

∫
L
u(r)dr

- Find u such that Au = b

→
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How to solve Inverse Problems?

Au = b
u : desired solution

b : observed data

A : mathematical model

Goal: recover u given b

▶ Option 1: Analytical methods

▶ Option 2: Variational regularization

▶ Option 3: Iterative regularization

▶ Option 4∗: Bayesian methods



Option 1: Analytical methods

Au = b, Φλ : b 7→ u
▶ Find formula Φλ, e.g. in MRI zero-filled reconstruction,

sum-of-squares, in CT or PET filtered backprojection

▶ Often: Φ0 = A†

Pros:

▶ very fast!

Cons:

▶ limited modelling options: forward operator

▶ need high-quality data: e.g. (close to) injective

▶ difficult to use a-priori information: e.g. nonnegativity or
smoothness

Hardly used when image quality is important (except CT)



Option 2: Variational regularization

Φλ(b) = argminu
{
D(Au, b) + λR(u)

}
D measures fidelity between Au and b, related to noise statistics

R regularizer penalizes unwanted features and ensures stability;
e.g. TV Rudin, Osher, Fatimi ’92 R(u) = ∥∇u∥1,
TGV Bredies, Kunisch, Pock ’10 R(u) = infv ∥∇u − v∥1 + β∥∇v∥1

λ ≥ 0 regularization parameter balances fidelity and regularization



Option 2: Variational regularization (cont 2)

Φλ(b) = argminu
{
D(Au, b) + λR(u)

}
▶ Only theoretical. Need to find algorithm (uk) such that

Φλ(b) := limk→∞ uk

▶ Proximal Gradient Descent / Forward-Backward Splitting
Bauschke and Combettes ’11, Beck ’17 ...

uk+1 = proxτkλR(u
k − τk∇E(uk))

E(u) = D(Au, b)

proximal operator Moreau ’62

proxf (z) := argmin
u

{
1

2
∥u − z∥2 + f (u)

}
Iterate: fit data, denoise



Option 2: Variational regularization (cont)

Φλ(b) = argminu
{
D(Au, b) + λR(u)

}
Pros:

▶ good modelling: forward operator, data fit and regularizer
provide a lot of freedom

▶ data quality can be poor if exploiting a-priori knowledge

▶ a lof of theory available

Cons:

▶ difficult to choose regularisation parameter λ

▶ slow: many evaluations of A and A∗ ongoing research

▶ modelling simple: TV, TGV work great on geometric
phantoms, room for improvement for real data



Option 3: Iterative regularization
Idea: take algorithm (uk) which converges to solution of Au = b.
For noisy data, stop early. Choose number of iterations K (δ):

ΦK (δ)(b
δ) = uK (δ)

Examples:
▶ Landweber iteration: uk+1 = uk − τk∇E(uk) Landweber ’51

▶ Linerised Bregman iteration:
uk+1 = argminu{τk⟨u,∇E(uk)⟩+ DJ(u, u

k)} Yin et al. ’08

Pros:
▶ modelling and data similar to variational regularization
▶ some theory available

Cons:
▶ slower than analytical methods, typically faster than

variational regularization
▶ difficult to determine when to stop
▶ as variational regularization most modelling rather simple



Comparison: Pros and Cons

Analytical
++ fast

+ good theory

– tailored to very
specific setting

– – too simple

Variational
++ rich theory

+ good
applicability

+ modelling simple

– – slow

Iterative
+ good

applicability

+ modelling simple

– medium speed

– some theory

▶ variational and iterative regularization state-of-the-art prior to
deep learning

▶ good modelling options: make use of some domain
knowledge

▶ a lot of theory: well understood

difficult to include more data: what does a typical reconstruction
look like?



Machine Learning meets Inverse Problems
(i.e. mostly deep learning)



“Analytic methods” meet Deep Learning
▶ automap Zhu et al. ’18, Nature paper with 1600+ citations

▶ ignore physical modelling (i.e. A)

Φ(b) = Nθ(b)

▶ learned postprocessing, e.g. Jin et al. ’17, 2000+ citations
▶ rough recon with physical model, then apply neural network

▶ unrolling, e.g. Gregor and Le Cun ’10, Adler and Öktem ’17

▶ take few iterations of algorithm and replace prox with neural
network
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“Analytic methods” meet Deep Learning
▶ automap Zhu et al. ’18, Nature paper with 1600+ citations

▶ ignore physical modelling (i.e. A) Φ(b) = Nθ(b)
▶ learned postprocessing, e.g. Jin et al. ’17, 2000+ citations

▶ rough recon with physical model, then apply neural network
Φ(b) = Nθ(A

†b)
▶ unrolling, e.g. Gregor and Le Cun ’10, Adler and Öktem ’17

▶ take few iterations of algorithm and replace prox with neural
network Φ(b) = uK , uk+1 = N k

θ (u
k − τk∇E(uk))

Not as stable as pre-deep learning approaches Antun et al. ’19



Variational regularization meets Deep Learning
Idea: learn a regularizer Rθ for variational regularization
▶ based on generative model Bora et al. ’17, Gθ: e.g. VAE, GAN

Learn Gθ from a set of images (uk) Image by Hu et al. ’20

Solve inverse problem via

z∗ ∈ argmin
z

∥AGθ(z)− b∥2, u∗ = Gθ(z
∗)

Notice that u∗ can also be found via

min
u

∥Au − b∥2 + R(u), R(u) = inf
z
ι{0}(u − Gθ(z))

Other options might be suitable Duff et al. JMIV ’23, e.g.

R(u) = inf
z
∥u − Gθ(z)∥22

▶ based on denoiser Romano et al. ’17

▶ train directly
▶ if “good” images (uk) and and “bad” images (vk) are available

Benning et al. ’17, choose parameters θ to minimize

EuRθ(u)− EvRθ(v)

▶ if Rθ is also constrained to be 1-Lipschitz, this computes
Wasserstein distance between distributions of (uk) and (vk).
Used in Lunz et al. ’19 with v = A†b.

▶ train Rθ using bilevel learning:

min
θ
Eu∗,b∥Φθ(b)− u∗∥2

Φθ(b) = argmin
u

D(Au, b) + Rθ(u)

▶ input-convex neural networks Mukherjee et al. ’20
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Iterative regularization meets Deep Learning
▶ Plug and play methods: Take learned denoiser Nθ and

replace prox operator Venkatakrishnan et al. ’13, e.g.

uk+1 = Nθ(u
k − τk∇E(uk))

Stop when E(uk) < δ. Not well behaved. Difficult to choose
parameters, when to stop etc.

▶ difficult to guarantee this terminates

▶ difficult to train end-to-end: no formula available when the
iterations will stop, likely discontinuous

Methods that don’t fit into these boxes:
▶ deep equilibrium Gilton et al. ’21

▶ use single network but iterate infinitely

Φ(b) = limk→∞ uk , uk+1 = Nθ(u
k − τk∇E(uk))

▶ score-based diffusion Song et al. ’21’



Summary

What to learn? I.e. network architecture

▶ deep learning and inverse problems can be combined in
various ways

▶ directly using the network (“analytic” methods) can be
unstable

▶ incorporating more structure (e.g. variational regularization)
or information (e.g. A) makes the approach more stable and
needs less data

What to learn from? I.e. training data

▶ Supervised: end-to-end, bilevel learning (u∗i , bi ), potentially
using A

▶ Unsupervised: (u∗i ), negative examples (vi )

▶ Semi-Supervised: (u∗i ), (bi ), potentially using A
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Equivariance and Inverse Problems



What happens when data is rotated?

Example: R rotation, Φ denoising network

Φ(Rb)
?
= RΦ(b)

Ferdia Sherry

Training data

Clean Noisy Ordinary Equivariant

Clean Noisy Ordinary Equivariant

Horizontal training example

Vertical testing example

noisy CNN proposed

Test data

Clean Noisy Ordinary Equivariant

Clean Noisy Ordinary Equivariant

Horizontal training example

Vertical testing example

noisy CNN proposed
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How to get “equivariant” mappings?

Φ(Rb) = RΦ(b)
▶ equivariance by learning: e.g. data augmentation (bi , ui )i

becomes (Ribi ,Riui )i
✓ simple to implement for image-based tasks (e.g. denoising,

image segmentation etc)

✗ potentially computationally costly: larger training data
✗ no guarantees to generalize to test data
✗ not always easy/possible (for inverse problems only viable in

simulations or if data is not paired)

▶ equivariance by design
✓ mathematical guarantees
✗ not trivial to do

Provable equivariant neural networks have been studied a lot
for segmentation, classification, denoising etc
Bekkers et al. ’18, Weiler and Cesa ’19, Cohen and Welling ’16, Dieleman et al.

’16, Sosnovik et al. ’19, Worall and Welling ’19, ...
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Equivariance and inverse problems

▶ inverse problem Au = b, solution operator: Φ : Y → X

▶ Hope Φ ◦ A is equivariant, e.g. R ◦ Φ ◦ A = Φ ◦ A ◦ R

▶ Φ ◦ A generally not equivariant. TV inpainting

R

A

A

Φ

Φ

R
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Group acting on images

▶ Example groups (image from Chen et al. ’23):

▶ G = Rn ⋊ H, H subgroup of the general linear group GL(n)

▶ g · x = Rx + t, g = (t,R) ∈ G , t ∈ Rn,R ∈ H

▶ (g · u)(x) = u(R−1(x − t))

This includes Weiler and Cesa ’19

▶ Translations: H = {e}
▶ Roto-Translations: H = SO(n)

▶ Finite Roto-Translations H = ZM (finite subgroup of SO(n))



Invariant functional implies equivariant prox

Theorem Celledoni et al. ’21

Let X = L2(Ω), J invariant: J(gu) = J(u). Then proxJ is
equivariant, i.e. for all u ∈ X

proxJ(g · u) = g · proxJ(u).

▶ Total variation (and higher order variants) is invariant to rigid
motion

▶ Natural condition on networks for unrolled algorithms

▶ Easily generalized to other groups Celledoni et al. ’21

▶ Proof does generalize to variatial regularization with
L2-datafit if A is equivariant



How to construct equivariant networks?
Proposition Let G be any group and Φ and Ψ equivariant.

▶ The composition Φ ◦Ψ is equivariant.

▶ The sum Φ+Ψ is equivariant.

▶ The identity u 7→ u is equivariant.

Next slide There are non-trivial G -equivariant linear operators.

Proposition Let G be any group and (Φu)(x) = u(x) + b(x). Φ
is equivariant if b is invariant, i.e. g · b = b.

Proposition There are G -equivariant nonlinearities.

Construct G -equivariant neural networks the usual way:

▶ layers Φ = Φn ◦ · · · ◦ Φ1

▶ Φ(u) = σ(Au + b)

▶ ResNet Φ(u) = u + σ(Au + b)



Equivariant linear functions (πX ≡ id)

In a nutshell: Linear G -equivariant operators are convolutions
with a kernel satisfying an additional constraint.

Theorem paraphrasing e.g. Weiler and Cesa ’19

Let X ,Y be function spaces, e.g. X = L2(Rn,Rm),
Y = L2(Rn,RM). The linear operator Φ : X → Y ,

Φf (x) =

∫
K (x , y)f (y)dy

with K : Rn → RM×m is G -equivariant iff there is a k such that

Φf (x) =

∫
k(x − y)f (y)dy

and k is H-invariant, i.e. for all R ∈ H, x ∈ Rn: k(Rx) = k(x).



CT Results
▶ LIDC-IDRI data set, 5000+200+1000 images, 50 views
▶ Equivariant = roto-translations; Ordinary = translations
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▶ higher SSIM and PSNR
▶ fewer artefacts and finer details



CT Results Celledoni et al., Inverse Problems, ’21.

Equivariant = roto-translations; Ordinary = translations

Equivariant improves upon Ordinary:
▶ small training sets
▶ unseen orientations
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Regularization with Generative Models



Generative Regularizers

Image by Hu et al. ’20

▶ Given a generative model Gθ : Z → U (e.g. AE, VAE, GAN), one can
define a generative regularizer Duff et al. JMIV ’23, e.g.

R(u) = inf
z

{
1

2
∥u − Gθ(z)∥22 + S(z)

}
▶ A variant with hard constraints has been used in Bora et al. ’17

R(u) = inf
z
ι{0}(u − Gθ(z))

▶ In both cases: only the mean is modelled



Modelling the Covariance Duff et al. PMB ’23

▶ Motivated by Dorta et al. ’18, we use the regularizer

R(u) = inf
z

{
log det(Σ(z)) +

1

2
∥u − G (z)∥2Σ−1(z) +

1

2
∥z∥22

}
This is related to u ∝ N (G (z),Σ(z)) and z ∝ N (0, I ).

Margaret Duff

▶ Visualization of learned positive and negative covariance.



Example: Magnetic Resonance Imaging (MRI)

MRI Reconstruction
Fourier transform F , sampling Sw = (wi )i∈Ω

min
u

{∑
i∈Ω

|(Fu)i − bi |2
}

MRI scanner

sampling S∗y minimizer



Comparison: Covariance Models
▶ constant diagonal (identity)

▶ varying diagonal (diagonal)

▶ proposed (covar)
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▶ In any case, the proposed model appears superior.



Comparison: End-to-end Learning
▶ Compare to Variational Network (VN) Hammernik et al. ’18

trained for specific sampling and noise (indicated in red).
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Comparison: End-to-end Learning (cont)
Compare to Variational Network (VN) Hammernik et al. ’18 trained for
specific sampling and noise (dashed lines).
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▶ Similar peak performance but proposed model generalizes
better to unseen settings.



Comparison: Other unsupervised methods
▶ Compare to Bora et al. ’17 (Range) which restricts to the range.
▶ Compare to Narnhofer et al. ’19 which uses an Inverse GAN.
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▶ Bora et al. ’17, Narnhofer et al. ’19 produce smoother solutions.



Comparison: Other unsupervised methods (cont)

▶ Compare to Bora et al. ’17 (Range) which restricts to the range.

▶ Compare to Narnhofer et al. ’19 which uses an Inverse GAN.
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▶ Better than Bora et al. ’17. Similar to Narnhofer et al. ’19.



Inexact Algorithms for Bilevel Learning



Bilevel learning for inverse problems

Upper level (learning):
Given (u∗i , bi )

n
i=1, bi = Au∗i + εi , solve

min
θ,ûi

1

n

n∑
i=1

∥ûi − ui∥22

Lower level (solve inverse problem):

ûi ∈ argmin
u

{D(Au, bi ) +Rθ(u)}

von Stackelberg 1934, Kunisch and Pock ’13, De los Reyes and Schönlieb ’13



How to solve bilevel learning?

Bilevel problem:
min
θ,û

U(û) s.t. û(θ) = argmin
u

L(u, θ)

▶ Reduced formulation: Ũ(θ) := U(û(θ))

▶ Implicit function theorem: ∇Ũ(θ) = −BTq, with
▶ q solves Aq = ∇U(û(θ))
▶ A = ∂2

uL(û(θ), θ)
▶ B = ∂θ∂uL(û(θ), θ)



Algorithm for Bilevel learning

Reduced formulation: minθ Ũ(θ)

▶ Compute gradients: Given θ

(1) Optimization: û(θ), e.g. via L-BFGS Nocedal and Wright ’00

(2) Linear system: Aq = ∇U(û(θ)), e.g. via CG
(3) Matrix-vector product: ∇Ũ(θ) = −BTq

▶ Solve reduced formulation via L-BFGS-B

This approach has a number of problems:

▶ û(θ) has to be computed

▶ Derivative assumes û(θ) is exact minimizer

▶ Large system of linear equations has to be solved
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How to solve Bilevel Learning Problems?

▶ Ignore “problems”, just compute it. e.g. Sherry et al. ’20

▶ Semi-smooth Newton: similar problems Kunisch and Pock ’13

▶ Replace lower level by finite number of iterations of algorithm:
not bilevel anymore Ochs et al. ’15

Use algorithm that acknowledges difficulties:
e.g. inexact DFO Ehrhardt and Roberts ’21

min
θ

f (θ)

Key idea: Use fϵ : |f (θ)− fϵ(θ)| < ϵ
Accuracy as low as possible, but as high as neces-
sary.
E.g. if fϵk+1(θk+1) < fϵk (θ

k)− ϵk − ϵk+1, then

f (θk+1) < f (θk)

Lindon Roberts



Dynamic Accuracy Derivative Free Optimization

min
θ

f (θ)

For k = 0, 1, 2, . . .

1) Sample fϵk in a neighbourhood of θk

2) Build model mk(θ) ≈ fϵk

3) Minimise mk around θk to get θk+1

4) If model decrease is sufficient compared
to function error: accept step

Theorem Ehrhardt and Roberts ’21

If f is sufficiently smooth and bounded below, then the
algorithm is globally convergent in the sense that

lim
k→∞

∥∇f (θk)∥ = 0 .



Parametric regularizer Ehrhardt and Roberts ’21

min
θ=(α,ν,ξ)

{
1

2

∑
i

∥ûi (θ)− ui∥22 + βκ2(θ)

}
, κ(θ) = 1 +

α∥∇∥2
ν(1 + ξ)

ûi (θ) = argmin
u

1

2
∥u − bi∥22 + α

(∑
j

√
∥(∇u)j∥22 + ν2 +

ξ

2
∥u∥22

)
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Dynamic Accuracy v Fixed Unrolling

Compare:

▶ proposed dynamic accuracy approach Ehrhardt and Roberts ’21

▶ lower-level solution ≈ fixed number of iterations Ochs et al. ’15
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Dynamic accuracy is faster: 10x speedup



Robustness to initialization etc

Compare:

▶ proposed dynamic accuracy approach Ehrhardt and Roberts ’21

▶ approximate lower-level solution by fixed number of iterations,
similar to Ochs et al. ’15 (Fixed)

▶ Fixed not robust to number of iterations

▶ Fixed with large number of iterations and dynamic accuracy
are robust to initialization



Conclusions

▶ Exploiting equivariance
▶ natural condition when proximal operators are replaced
▶ needs less data
▶ no extra computational cost at test time

▶ Generative regularizers: modelling of prior correlations
▶ Unsupervised model: no paired data required
▶ Learning independent of inverse problem: generalization

▶ Bilevel learning computationally challenging: requires novel
solutions
▶ Next step: Inexact first-order algorithms for bilevel learning


