Stochastic Optimisation for Large-Scale Inverse Problems

Matthias J. Ehrhardt

Department of Mathematical Sciences, University of Bath, UK

22 May, 2024

Engineering and Physical Sciences Research Council

IMA Inverse Problems: 11-13 September 2024

Invited Speakers

Coralia Cartis (Oxford) Marcelo Pereyra (Heriot Watt) Olga Hernandez (Eindhoven University of Technology) Rob Scheichl (Heidelberg)

Main Aim and Outline

$$x^{\sharp} \in rgmin_{x} \left\{ \sum_{i=1}^{\ell} f_i(A_i x) + \sum_{i=1}^{m} g_i(x) + \sum_{i=1}^{n} h_i(x)
ight\}$$

- proper, convex and lower semi-continuous
- ℓ, m, n large and/or $A_i x$ expensive

Outline:

- 1) Why? Inverse Problems and Optimization
- 2) How? Randomized Algorithms for Convex Optimization
- 3) So what? Applications: PET, CT, ...

CT Reconstruction with TV

Total variation (TV)

Rudin, Osher, Fatemi '92

 $\mathcal{R}(u) = \|Du\|_1$

$$\min_{u} \left\{ \sum_{j=1}^{s} \|K_{j}u - b_{j}\|^{2} + \lambda \|Du\|_{1} + \iota_{+}(u) \right\}$$

$$\min_{x}\left\{\frac{g(x)+\sum_{i=1}^{n}h_{i}(x)\right\}$$

$$x = u, \ \ell = 0, \ m = 1, \ n = s$$

$$f = 0$$

$$g(x) = \lambda \|Dx\|_1 + i_+(x)$$

$$h_i = \|K_i \cdot -b_i\|^2 \quad i \in [n]$$

CT Reconstruction with TV: alternative

Total variation (TV)

Rudin, Osher, Fatemi '92

 $\mathcal{R}(u) = \|Du\|_1$

$$\min_{u} \left\{ \sum_{j=1}^{s} \|K_{j}u - b_{j}\|^{2} + \lambda \|Du\|_{1} + \iota_{+}(u) \right\}$$

$$\min_{x}\left\{f(Ax)+g(x)+\sum_{i=1}^{n}h_{i}(x)\right\}$$

$$x = u, \ \ell = 1, \ m = 1, \ n = s$$

$$f(y) = \lambda ||y||_1, \ A = D$$

$$g(x) = i_+(x)$$

$$h_i(x) = ||K_i x - b_i||^2 \quad i \in [n]$$

CT Reconstruction with TV: subsets

Total variation (TV)

Rudin, Osher, Fatemi '92

 $\mathcal{R}(u) = \|Du\|_1$

$$\min_{u} \left\{ \sum_{j=1}^{s} \|K_{j}u - b_{j}\|^{2} + \lambda \|Du\|_{1} + \iota_{+}(u) \right\}$$

$$\min_{x}\left\{f(Ax)+g(x)+\sum_{i=1}^{n}h_{i}(x)\right\}$$

$$\begin{array}{l} x = u, \ \ell = 1, \ m = 1, \ n = ? \\ f(y) = \lambda \|y\|_1, \ A = D \\ g(x) = \imath_+(x) \\ h_i(x) = \sum_{j \in S_i} \|K_j x - b_j\|^2 \end{array}$$

PET Reconstruction with TGV

Total generalized variation (TGV)

Bredies, Kunisch, Pock '10

 $\mathcal{R}(u) = \min_{v} \{ \|Du - v\|_1 + \beta \|Dv\|_1 \}$

$$\min_{u,v}\left\{\sum_{j=1}^{s}\mathcal{D}_{j}(K_{j}u)+\lambda\|Du-v\|_{1}+\lambda\beta\|Dv\|_{1}+\iota_{+}(u)\right\}$$

$$\min_{x} \left\{ \sum_{i=1}^{\ell} f_i(A_i x) + g(x) \right\}$$

$$\begin{cases} x = (u; v), \ \ell = s + 2, \ m = 1, \ n = 0 \\ f_i = \mathcal{D}_i, \ A_i = (K_i, 0), \ i \in [s] \\ f_{\ell-1} = \lambda \| \cdot \|_1, \ A_{n-1} = (D, -l) \\ f_{\ell} = \lambda \beta \| \cdot \|_1, \ A_n = (0, D) \\ g(x) = i_+(u) \end{cases}$$

Motion corrected CT reconstruction

$$\min_{u} \left\{ \sum_{i=1}^{s} \| K M_i u - b_i \|^2 + \mathcal{R}(u) \right\}$$

- *M_i* motion transformation
- here s = 10 motion gates; computations are a bottleneck
- ▶ No motion correction: $M_i = I$

e.g. Delplancke, Thielemans, Ehrhardt '21

Parallel MRI

$$\min_{u} \left\{ \sum_{i=1}^{s} \|SFC_{i}u - b_{i}\|^{2} + \mathcal{R}(u) \right\}$$

• C_i sensitivity map for *i*th MR coil, s = 12

Pruessmann et al. '99

Designing Optimisation Algorithms

Template:

$$\min_{x} \left\{ f(Ax) + g(x) + h(x) \right\}$$

h: convex and smooth: gradient descent

$$x^+ = x - \tau \nabla h(x)$$

Template:

$$\min_{x} \left\{ f(Ax) + g(x) + h(x) \right\}$$

h: convex and smooth: gradient descent

$$x^+ = x - \tau \nabla h(x)$$

g: convex and prox-friendly: proximal point algorithm

$$x^+ = \operatorname{prox}_{\tau g}(x) = \arg\min_{z} \left\{ \frac{1}{2} \|z - x\|^2 + \tau g(z) \right\}$$

Template:

$$\min_{x} \left\{ f(Ax) + g(x) + h(x) \right\}$$

h: convex and smooth: gradient descent

$$x^+ = x - \tau \nabla h(x)$$

g: convex and prox-friendly: proximal point algorithm

$$x^+ = \operatorname{prox}_{\tau g}(x) = \arg\min_{z} \left\{ \frac{1}{2} \|z - x\|^2 + \tau g(z) \right\}$$

F: convex, prox-friendly, but f ∘ A is not: split f and A f(Ax) = f^{**}(Ax) = sup_y⟨Ax, y⟩ − f^{*}(x)

Template:

$$\min_{x} \left\{ f(Ax) + g(x) + h(x) \right\}$$

h: convex and smooth: gradient descent

$$x^+ = x - \tau \nabla h(x)$$

g: convex and prox-friendly: proximal point algorithm

$$x^+ = \operatorname{prox}_{\tau g}(x) = \arg\min_{z} \left\{ \frac{1}{2} \|z - x\|^2 + \tau g(z) \right\}$$

 f: convex, prox-friendly, but f ∘ A is not: split f and A f(Ax) = f^{**}(Ax) = sup_y⟨Ax, y⟩ - f^{*}(x)
 Dual: min_y {f^{*}(y) + (g + h)^{*}(-A^{*}y)}

Template:

$$\min_{x} \left\{ f(Ax) + g(x) + h(x) \right\}$$

h: convex and smooth: gradient descent

$$x^+ = x - \tau \nabla h(x)$$

g: convex and prox-friendly: proximal point algorithm

$$x^{+} = \operatorname{prox}_{\tau g}(x) = \arg \min_{z} \left\{ \frac{1}{2} \|z - x\|^{2} + \tau g(z) \right\}$$

f: convex, prox-friendly, but f ∘ A is not: split f and A
 f(Ax) = f^{**}(Ax) = sup_y⟨Ax, y⟩ − f^{*}(x)

Dual: min_y { $f^*(y) + (g + h)^*(-A^*y)$ } Primal-Dual: min_x max_y { $\langle Ax, y \rangle - f^*(y) + g(x) + h(x)$ }

Building Algorithms

Template: $\min_{x} \{f(Ax) + g(x) + h(x)\}$

New algorithms are designed by mix-and-match:

Proximal Gradient Descent (f = 0): Combettes and Wajs '05 $x^+ = \text{prox}_{\tau g}(x - \tau \nabla h(x))$

Building Algorithms

Template: $\min_{x} \{f(Ax) + g(x) + h(x)\}$

New algorithms are designed by mix-and-match:

Proximal Gradient Descent (f = 0): Combettes and Wajs '05 $x^+ = \operatorname{prox}_{\tau g}(x - \tau \nabla h(x))$

Primal-Dual Hybrid Gradient (h = 0) Chambolle and Pock '11 $x^+ = \operatorname{prox}_{\tau g}(x - \tau A^* y)$ $\overline{x} = x + \theta(x^+ - x)$ $y^+ = \operatorname{prox}_{\sigma f^*}(y + \sigma A \overline{x})$

Building Algorithms

Template: $\min_{x} \{f(Ax) + g(x) + h(x)\}$

New algorithms are designed by mix-and-match:

Proximal Gradient Descent (f = 0): Combettes and Wajs '05 $x^+ = \operatorname{prox}_{\tau g}(x - \tau \nabla h(x))$

Primal-Dual Hybrid Gradient (h = 0) Chambolle and Pock '11 $x^{+} = \operatorname{prox}_{\tau g}(x - \tau A^{*}y)$ $\overline{x} = x + \theta(x^{+} - x)$ $y^{+} = \operatorname{prox}_{\sigma f^{*}}(y + \sigma A \overline{x})$

Primal-Dual Three Operator Splitting (PD3O) Yan '18 $x^{+} = \operatorname{prox}_{\tau g}(x - \tau A^{*}y - \tau \nabla h(x))$ $\overline{x} = x + \theta(x^{+} - x) + \tau (\nabla h(x^{+}) - \nabla h(x))$ $y^{+} = \operatorname{prox}_{\sigma f^{*}}(y + \sigma A\overline{x})$

$$\begin{aligned} & \textbf{GD} \ (f=0,g=0) \\ & x^+ = x - \tau \nabla h(x) \end{aligned}$$

$$\mathbf{GD} (f = 0, g = 0)$$

$$x^+ = x - \tau \sum_{i=1}^n \nabla h_i(x)$$

$$\begin{aligned} \mathsf{GD} \ (f = 0, g = 0) \\ x^+ = x - \tau \sum_{i=1}^n \nabla h_i(x) \end{aligned}$$

SGD and variants (f = 0, g = 0)Uniformly at random select j $x^+ = x - \tau \tilde{\nabla}^j h(x)$

$$\begin{aligned} \mathsf{GD} \ (f = 0, g = 0) \\ x^+ = x - \tau \sum_{i=1}^n \nabla h_i(x) \end{aligned}$$

SGD and variants (f = 0, g = 0)Uniformly at random select j $x^+ = x - \tau \tilde{\nabla}^j h(x)$

SGD: randomly choose *j*,

 $\tilde{\nabla}^j h(x) = n \nabla h_j(x)$

nonconvergence for fixed τ , "slow" convergence for carefully decreasing τ Robbins and Monro '51

$$\begin{aligned} \mathsf{GD} \ (f = 0, g = 0) \\ x^+ = x - \tau \sum_{i=1}^n \nabla h_i(x) \end{aligned}$$

SGD and variants (f = 0, g = 0)Uniformly at random select j $x^+ = x - \tau \tilde{\nabla}^j h(x)$

SGD: randomly choose j,

 $\tilde{\nabla}^j h(x) = n \nabla h_j(x)$

nonconvergence for fixed τ , "slow" convergence for carefully decreasing τ Robbins and Monro '51

SAGA/SVRG: randomly choose j,

 $\tilde{\nabla}^j h(x) = n(\nabla h_j(x) - g_j) + g$

g historic gradient, g_j historic stochastic gradient Defazio et al. '14, Johnsen and Zhang '13, SAGA converges for $\tau \leq 1/(3nL_{max})$

$$\begin{aligned} \mathsf{GD} \ (f = 0, g = 0) \\ x^+ = x - \tau \sum_{i=1}^n \nabla h_i(x) \end{aligned}$$

SGD and variants (f = 0, g = 0)Uniformly at random select j $x^+ = x - \tau \tilde{\nabla}^j h(x)$

SGD: randomly choose j,

 $\tilde{\nabla}^j h(x) = n \nabla h_j(x)$

nonconvergence for fixed τ , "slow" convergence for carefully decreasing τ Robbins and Monro '51

SAGA/SVRG: randomly choose j,

 $\tilde{\nabla}^j h(x) = n(\nabla h_j(x) - g_j) + g$

g historic gradient, g_j historic stochastic gradient Defazio et al. '14, Johnsen and Zhang '13, SAGA converges for $\tau \leq 1/(3nL_{max})$ Similar algorithms exist for $\sum_i g_i(x)$ Bianchi '16, Traore et al. '23

Revisiting PDHG

PDHG:

$$\begin{aligned} x^{+} &= \operatorname{prox}_{\tau g}(x - \tau A^{*}y) \\ \overline{x} &= x^{+} + \theta(x^{+} - x) \\ y^{+} &= \operatorname{prox}_{\sigma f^{*}}(y + \sigma A \overline{x}) \end{aligned}$$

Revisiting PDHG

PDHG:

$$\begin{aligned} x^{+} &= \operatorname{prox}_{\tau g}(x - \tau A^{*}y) \\ \overline{x} &= x^{+} + \theta(x^{+} - x) \\ y^{+} &= \operatorname{prox}_{\sigma f^{*}}(y + \sigma A \overline{x}) \end{aligned}$$

PDHG (dual extrapolation):

$$y^{+} = \operatorname{prox}_{\sigma f^{*}}(y + \sigma Ax)$$

$$\overline{y} = y^{+} + \theta(y^{+} - y)$$

$$x^{+} = \operatorname{prox}_{\tau g}(x - \tau A^{*}\overline{y})$$

Revisiting PDHG

PDHG:

$$\begin{aligned} x^{+} &= \operatorname{prox}_{\tau g}(x - \tau A^{*}y) \\ \overline{x} &= x^{+} + \theta(x^{+} - x) \\ y^{+} &= \operatorname{prox}_{\sigma f^{*}}(y + \sigma A \overline{x}) \end{aligned}$$

PDHG (dual extrapolation):

$$y^{+} = \operatorname{prox}_{\sigma f^{*}}(y + \sigma A x)$$

$$\overline{y} = y^{+} + \theta(y^{+} - y)$$

$$x^{+} = \operatorname{prox}_{\tau g}(x - \tau A^{*} \overline{y})$$

PDHG (dual extrapolation with $f = \sum_{i} f_{i}$): $y_{i}^{+} = \operatorname{prox}_{\sigma f_{i}^{*}}(y_{i} + \sigma A_{i}x), i = 1, \dots, \ell$ $\overline{y}_{i} = y_{i}^{+} + \theta(y_{i}^{+} - y_{i}), i = 1, \dots, \ell$ $x^{+} = \operatorname{prox}_{\tau g}(x - \tau \sum_{i=1}^{\ell} A_{i}^{*} \overline{y}_{i})$

From PDHG to SPDHG

PDHG (dual extrapolation with $f = \sum_{i} f_{i}$):

$$y_i^+ = \operatorname{prox}_{\sigma f_i^*}(y_i + \sigma A_i x), i = 1, \dots, \ell$$

$$\overline{y}_i = y_i^+ + \theta(y_i^+ - y_i), i = 1, \dots, \ell$$

$$x^+ = \operatorname{prox}_{\tau g}(x - \tau \sum_{i=1}^{\ell} A_i^* \overline{y}_i)$$

From PDHG to SPDHG

PDHG (dual extrapolation with $f = \sum_{i} f_{i}$):

$$y_i^+ = \operatorname{prox}_{\sigma f_i^*}(y_i + \sigma A_i x), i = 1, \dots, \ell$$

$$\overline{y}_i = y_i^+ + \theta(y_i^+ - y_i), i = 1, \dots, \ell$$

$$x^+ = \operatorname{prox}_{\tau g}(x - \tau \sum_{i=1}^{\ell} A_i^* \overline{y}_i)$$

Stochastic PDHG (SPDHG):

Chambolle, Ehrhardt, Richtárik,

Schönlieb '18

Uniform at randomly select j $y_i^+ = \operatorname{prox}_{\sigma f_i^*}(y_i + \sigma A_i x), i = j$ $\overline{y}_i = y_i^+ + \theta \ell(y_i^+ - y_i), i = j; \overline{y}_i = y_i \text{ else}$ $x^+ = \operatorname{prox}_{\tau g}(x - \tau \sum_{i=1}^{\ell} A_i^* \overline{y}_i)$

Convergence for στ < 1/(ℓ max_i ||A_i||²), θ = 1 Chambolle, Ehrhardt, Richtárik, Schönlieb '18, Gutiérrez, Delplancke, Ehrhardt '21, Alacaoglu, Fercoq, Cevher '22

SPDHG as SAGA

Stochastic PDHG (SPDHG):

Chambolle, Ehrhardt, Richtárik,

Schönlieb '18

Uniform at randomly select \boldsymbol{j}

$$y_j^+ = \operatorname{prox}_{\sigma f_j^*}(y_j + \sigma A_j x)$$

$$\overline{y}_i = y_i^+ + \theta \ell (y_i^+ - y_i), i = j; \overline{y}_i = y_i \text{ else}$$

$$x^+ = \operatorname{prox}_{\tau g} (x - \tau \sum_{i=1}^{\ell} A_i^* \overline{y}_i)$$

SPDHG as SAGA

Stochastic PDHG (SPDHG):

Chambolle, Ehrhardt, Richtárik,

Schönlieb '18

Uniform at randomly select j

$$y_j^+ = \operatorname{prox}_{\sigma f_j^*}(y_j + \sigma A_j x)$$

 $\overline{y}_i = y_i^+ + \theta \ell(y_i^+ - y_i), i = j; \overline{y}_i = y_i \text{ else}$
 $x^+ = \operatorname{prox}_{\tau g}(x - \tau \sum_{i=1}^{\ell} A_i^* \overline{y}_i)$

SPDHG as SAGA (new):

Uniform at randomly select j $y_j^+ = \operatorname{prox}_{\sigma f_j^*}(y_j + \sigma A_j x)$ $\tilde{\nabla}^j = (1 + \theta \ell) A_j^*(y_j^+ - y_j) + \sum_{i=1}^{\ell} A_i^* y_i$ $x^+ = \operatorname{prox}_{\tau g}(x - \tau \tilde{\nabla}^j)$

▶ essentially SAGA version of SPDHG
 ▶ for σ = 1, step size bound τ < 1/(ℓ max_i ||A_i||²) 3× larger

PET: Sanity Check, Convergence to Saddle Point (TV)

saddle point (5000 iter PDHG)

PET: Faster than PDHG, TV, 20 epochs

SPDHG (252 subsets)

PET:Faster than PDHG, TV, 5 epochs

PDHG

SPDHG (252 subsets, 5 epochs)

PET:Faster than PDHG, TV, 1 epochs

PDHG

SPDHG (252 subsets)

PET, More subsets are faster

 $\ell = 1, 21, 100, 252$

 $\sigma\tau < 1/(\ell \max_i \|A_i\|^2)$

• Is a large-product $\sigma\tau$ good? Empirically yes

 $\sigma\tau < 1/(\ell \max_i \|A_i\|^2)$

- Is a large-product $\sigma \tau$ good? Empirically yes
- Is upper bound tight? No, e.g. for PDHG στ ||A||² < 4/3 is possible Ma et al. '23 (and in fact optimal). Also empirically noticed for SPDHG, e.g. Schramm and Holler '22</p>

 $\sigma\tau < 1/(\ell \max_i \|A_i\|^2)$

- Is a large-product $\sigma\tau$ good? Empirically yes
- Is upper bound tight? No, e.g. for PDHG στ ||A||² < 4/3 is possible Ma et al. '23 (and in fact optimal). Also empirically noticed for SPDHG, e.g. Schramm and Holler '22</p>
- ▶ Is the ratio σ/τ important? Yes Delplancke et al. '20

 $\sigma\tau < 1/(\ell \max_i \|A_i\|^2)$

- Is a large-product $\sigma \tau$ good? Empirically yes
- Is upper bound tight? No, e.g. for PDHG στ ||A||² < 4/3 is possible Ma et al. '23 (and in fact optimal). Also empirically noticed for SPDHG, e.g. Schramm and Holler '22</p>
- ▶ Is the ratio σ/τ important? Yes Delplancke et al. '20

• How to choose the ratio σ/τ ? Open question

Adaptive step-sizes

- Idea: let σ and τ vary with iterations
- ▶ PDHG: a bit of theory + emprical results Goldstein et al. '15
- SPDHG: empirical results for MPI Zdun and Brandt '21

Adaptive step-sizes

- Idea: let σ and τ vary with iterations
- ▶ PDHG: a bit of theory + emprical results Goldstein et al. '15
- SPDHG: empirical results for MPI Zdun and Brandt '21
- ► SPDHG: theory + numerics for CT Chambolle, Ehrhardt et al. '24

CT: 10 epochs Ehrhardt, Kereta, Liang, Tang '24 (to be submitted)

CT: 3 epochs Ehrhardt, Kereta, Liang, Tang '24 (to be submitted)

CT: 1 epoch Ehrhardt, Kereta, Liang, Tang '24 (to be submitted)

CT: Quantitative Comparison

Ehrhardt, Kereta, Liang, Tang '24 (to be submitted)

CT: Quantitative Comparison, Noise

Speed seems to depend on noise in the data

Gradient based methods more effected

Ehrhardt, Kereta, Liang, Tang '24 (to be submitted)

CT: Random v Deterministic

similar convergence for 30 subsets (similar to literature)

Herman and Meyer '93, Ehrhardt, Kereta, Liang, Tang '24 (to be submitted)

CT: Random v Deterministic

- similar convergence for 30 subsets (similar to literature)
- big difference for 240 subsets

Herman and Meyer '93, Ehrhardt, Kereta, Liang, Tang '24 (to be submitted)

Conclusions and Outlook

Conclusions:

- Zoo of stochastic algorithms exists (gets larger and larger)
- Randomness seems important in general and not just mathematical convenience
- Speeds up reconstruction of inverse problems; e.g. PET, listmode PET (randomize over events), CT, parallel MRI, motion-corrected CT, magnetic particle imaging

Future directions:

- Tighter analysis
- Inverse problems specific analysis
- Learned algorithms

