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Main Aim and Outline

l m n
x* € arg min {Z fi(AX)+ > &)+ hi(X)}
i=1 i=1 i=1

P proper, convex and lower semi-continuous

» /. m,n large and/or A;x expensive

Outline:
1) Why? Inverse Problems and Optimization
2) How? Randomized Algorithms for Convex Optimization

3) So what? Applications: PET, CT, ...



CT Reconstruction with TV

Total variation (TV)
Rudin, Osher, Fatemi '92
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CT Reconstruction with TV: alternative

Total variation (TV)
Rudin, Osher, Fatemi '92

R(u) = || Dull ‘
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CT Reconstruction with TV: subsets

Total variation (TV)
Rudin, Osher, Fatemi '92
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PET Reconstruction with TGV

Total generalized variation (TGV)
Bredies, Kunisch, Pock '10
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Motion corrected CT reconstruction

muin {Z | K Miu — b;||? —i—R(u)}

i=1
» M, motion transformation
» here s = 10 motion gates; computations are a bottleneck
» No motion correction: M; = |

1st.state last state

7y .

e.g. Delplancke, Thielemans, Ehrhardt '21



Parallel MRI

min {Z |SF Ciu — b;||> + R(u)}

i=1

» (; sensitivity map for ith MR coil, s = 12

Pruessmann et al. '99



Designing Optimisation Algorithms



Building blocks for Convex Optimisation
Template:
min {£(Ax) + g(x) + h(:)}
> h: convex and smooth: gradient descent

xT = x —7Vh(x)
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Building blocks for Convex Optimisation
Template:

min {£(Ax) + g(x) + h(x)}

> h: convex and smooth: gradient descent

xT = x —7Vh(x)

» g: convex and prox-friendly: proximal point algorithm

1
xT = prox,,(x) = argmin {Hz —x|? + Tg(z)}
z |2

> f: convex, prox-friendly, but f o A is not: split f and A
f(Ax) = £ (Ax) = sup, (Ax, y) — f*(x)

Dual: miny {f*(y) + (g + h)"(=A"y)}
Primal-Dual: min, max, {(Ax,y) — f*(y) + g(x) + h(x)}



Building Algorithms
Template:  miny {f(Ax) 4+ g(x) + h(x)}
New algorithms are designed by mix-and-match:

Proximal Gradient Descent (f = 0)2 Combettes and Wajs '05
xt = prox, (x — TVh(x))



Building Algorithms
Template:  miny {f(Ax) 4+ g(x) + h(x)}
New algorithms are designed by mix-and-match:
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Building Algorithms
Template:  miny {f(Ax) 4+ g(x) + h(x)}
New algorithms are designed by mix-and-match:
Proximal Gradient Descent (f = 0): Combettes and Wajs '05
xt = prox, (x — TVh(x))

Primal-Dual Hybrid Gradient (h = 0) Chambolle and Pock '11
xt = prox, (x — TA*y)
X=x+0(xT —x)

y T = prox, ¢+ (y + 0 AX)

Primal-Dual Three Operator Splitting (PD30) Yan '18
xt = prox,(x — TA*y—7Vh(x))
X =x+0(xT — x)+7(Vh(xt) = Vh(x))
Yt = proxyp (y + oA%)



Revisiting Gradient Descent: SGD and its variants
GD (f =0,g=0)
xt =x—7Vh(x)
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Revisiting Gradient Descent: SGD and its variants
GD (f =0,g = 0)
xt =x—7>",Vhi(x)

SGD and variants (f = 0,g = 0)
Uniformly at random select j
xt = x — V/h(x)
» SGD: randomly choose j,
V/h(x) = nVhi(x)
nonconvergence for fixed 7, "slow” convergence for carefully

decreasing T Robbins and Monro '51
» SAGA/SVRG: randomly choose j,

V/h(x) = n(Vhj(x) —gj)+ &
g historic gradient, g; historic stochastic gradient Defazio et al.

'14, Johnsen and Zhang '13, SAGA converges for 7 < 1/(3nLmax)
» Similar algorithms exist for > ; gi(x) Bianchi '16, Traore et al. 23
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Revisiting PDHG
PDHG:
xt = prox, (x — TA*y)
X =xT+0(xT —x)

y* = prox, .« (y + 0 AX)

PDHG (dual extrapolation):
y T = prox, ¢+ (y + 0 Ax)
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xt = prox, (x — TA*y)



Revisiting PDHG
PDHG:
xt = prox, (x — TA*y)
=xT 4+ 0(xT — x)

X
yT = prox ¢« (y + 0 AX)

PDHG (dual extrapolation):
y T = prox, ¢+ (y + 0 Ax)
y=y"+0(y"—y)
xt = prox, (x — TA*y)

PDHG (dual extrapolation with f =" f;):
y,-+ = proxafi*(y,- +0Aix),i=1,...¢
Vi=yt+0(m —y)i=1,...¢
X = prox, (x = 7521, A7Y))



From PDHG to SPDHG
PDHG (dual extrapolation with f =" f;):
yim = prox, e (yi + cAix),i = 1,....(
Yi:ylfr+0(yl-+—y,-),i:1,...,£

/¢ _
xt = PFOXTg(X - TE,-:l A;‘y,‘)



From PDHG to SPDHG
PDHG (dual extrapolation with f =" f;):
yim = prox, e (yi + cAix),i = 1,....(
Vi :y,-JrJrG(yiJr —yi)i=1...,¢

Y4 _
xt = PFOXTg(X - TE,-:l A;‘y,‘)

Stochastic PDHG (SPDHG): Chambolle, Ehrhardt, Richtarik,
Schénlieb '18

Uniform at randomly select j
}’,-Jr = [P (vi+0Aix),i=j
Vi=y +0Uy;" —yi),i =iy =y else
xt = prox, g (x — Tzle ATy:)
> convergence for o7 < 1/(£max; ||Ai]|?), 0 =1

Chambolle, Ehrhardt, Richtarik, Schonlieb '18, Gutiérrez, Delplancke, Ehrhardt
'21, Alacaoglu, Fercoq, Cevher '22



SPDHG as SAGA
Stochastic PDHG (SPDHG): Chambolle, Ehrhardt, Richtarik,
Schénlieb '18
Uniform at randomly select j
yj+ = ProXgg: (yj + 0Aix)
Vi=y; +0Uy;" —yi),i =]y =y else

) _
xT = prox,  (x = 73°_1 A7V;)



SPDHG as SAGA

Stochastic PDHG (SPDHG): Chambolle, Ehrhardt, Richtarik,
Schonlieb '18

Uniform at randomly select j
yj‘|r = ProXg- (yj + 0Aix)
Yi=y 00y —yi),i=j;y; =y else

Y4 _
xT = prox,  (x = 73°_1 A7V;)

SPDHG as SAGA (new):
Uniform at randomly select j
yj+ = Prox,f- (yj + 0Ajx)
Vi= 1+ 00A (" — y) + Ticy Aty
x* = prox, (x — 7V/)

> essentially SAGA version of SPDHG
» for o = 1, step size bound 7 < 1/(¢max;||A;||?) 3x larger



PET: Sanity Check, Convergence to Saddle Point (TV)

S
A

saddle point (5000 iter PDHG)

€3

SPDHG (20 epochs, 252 subsets)




PET: Faster than PDHG, TV, 20 epochs

PDHG

SPDHG (252 subsets)




PET:Faster than PDHG, TV, 5 epochs

PDHG

SPDHG (252 subsets, 5 epochs)




PET:Faster than PDHG, TV, 1 epochs

PDHG

SPDHG (252 subsets)




PET, More subsets are faster
¢ =1,21,100,252

PDHG SPDHG (21 subsets) ~ —#— SPDHG (100)  —e— SPDHG (252)
35 10°
- 10-1 4
& 30
£ 2
£ k9]
£ 2 10-2 4
e 210
o 25 3
=
g 1072 4
20
T T 104 T T
0 10 20 30 0 10 20

epochs = expected number of forward projections

Ehrhardt, Markiewicz, Schonlieb '19



Step-size condition of SPDHG
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or < 1/(¢max ||A,-H2)

» Is a large-product o7 good? Empirically yes
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Step-size condition of SPDHG

or < 1/(¢max ||A,-H2)

» Is a large-product o7 good? Empirically yes

» s upper bound tight? No, e.g. for PDHG o7||A||?> < 4/3 is
possible Ma et al. '23 (and in fact optimal). Also empirically
noticed for SPDHG, e.g. Schramm and Holler 22

» Is the ratio o/7 important? Yes Delplancke et al. '20

55
50
a5

£ 40

€35
30
5
20

0 5 10 15 20 25 30 0 5 10 15 20 25 30
epochs epochs

(a) synthetic data (b) real data

» How to choose the ratio o/7? Open question



Adaptive step-sizes
P Idea: let o and 7 vary with iterations
> PDHG: a bit of theory 4+ emprical results Goldstein et al. '15
» SPDHG: empirical results for MP| Zdun and Brandt '21



Adaptive step-sizes

P Idea: let o and 7 vary with iterations

> PDHG: a bit of theory 4+ emprical results Goldstein et al. '15

» SPDHG: empirical results for MP| Zdun and Brandt '21

» SPDHG: theory + numerics for CT Chambolle, Ehrhardt et al. '24

£ 10 - 10°
o N .l s SPDHG s SPDHG
S ~—— A-SPDHG (a) M o s A-SPDHG (a)
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CT: 10 epochs Enrhardt, Kereta, Liang, Tang 24 (to be submitted)




CT: 3 epochs Enrhardt, Kereta, Liang, Tang '24 (to be submitted)




CT: 1 epOCh Ehrhardt, Kereta, Liang, Tang '24 (to be submitted)




CT: Quantitative Comparison

0 20 40 60 80 100
#data passes

Ehrhardt, Kereta, Liang, Tang '24 (to be submitted)



CT: Quantitative Comparison, Noise

10%
10%
o el L4 ~
= = x
i o :
£ g e
=3 € 10° o
1071
1072 1 1072 n|
0 5 10 15 20 25 30 35 40 [ 5 10 15 20 25 30 35 4 0 5 10 15 20 25 30 35 40
#data passes #data passes #data passes
high noise medium noise (shown) low noise

» Speed seems to depend on noise in the data

» Gradient based methods more effected

Ehrhardt, Kereta, Liang, Tang '24 (to be submitted)



CT: Random v Deterministic

—— SAGA
—— IAGA Herman-Meyer

D(x) — O(x ")

0
#data passes

30 subsets

» similar convergence for 30 subsets (similar to literature)

Herman and Meyer '93, Ehrhardt, Kereta, Liang, Tang '24 (to be submitted)



CT: Random v Deterministic

D(x) — O(x ")

—— SAGA
—— IAGA Herman-Meyer

—— SAGA
—— IAGA Herman-Meyer

T

0
#data passes

30 subsets

10 20 30 10 5
#data passes

240 subsets

» similar convergence for 30 subsets (similar to literature)

> big difference for 240 subsets

Herman and Meyer '93, Ehrhardt, Kereta, Liang, Tang '24 (to be submitted)



Conclusions and Outlook

Conclusions:
» Zoo of stochastic algorithms exists (gets
larger and larger)
> Randomness seems important in general  [EEEEUIITRATS
and not just mathematical convenience

» Speeds up reconstruction of inverse
problems; e.g. PET, listmode PET
(randomize over events), CT, parallel MR,
motion-corrected CT, magnetic particle ra"_dpmized
imaging £ C

Future directions:

» Tighter analysis
» Inverse problems specific analysis

P Learned algorithms



