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Inverse problems and Variational Regularization

Ax =y
x : desired solution

y . observed data
A : mathematical model

Goal: recover X given Y/

Variational regularization
Approximate a solution x* of Ax = y via

% € argmin, s D(Ax, y) + \R(x)

D data fidelity: related to noise statistics
R regularizer: penalizes unwanted features, stability
A > 0 regularization parameter: weights data and regularizer

Scherzer et al. '08, Ito and Jin '15, Benning and Burger '18



Example: Magnetic Resonance Imaging (MRI)

MRI Reconstruction Lustig et al. '07
Fourier transform F, sampling Sw = (w;);cq

mind 3 () =i+ [l |

i€Q

poor choice good choice



More Complicated Regularizers

Fields-of-Experts (FOE) Roth and Black '05

K
R(x) =D Al x|,
k=1

E.g. 48 kernels 7 x 7 = 2448 parameters

noisy poor choice well-trained



More Complicated Regularizers

Fields-of-Experts (FOE) Roth and Black '05
K
R() =D Mellriw * x|,
k=1
E.g. 48 kernels 7 x 7 = 2448 parameters

Input Convex Neural Networks (ICNN) Amos et al. '17, Mukherjee
et al. 24’

R(x) = zk,
Zk+1:O‘(szk-l-VkX-I-bk),k:O,...,K—l,Zo:X

constraints on o and Wy, e.g. 2 layers, 2000 parameters

» Convex Ridge Regularizers (CRR) Goujon et al. '22, = 4000
parameters
> ...



Bilevel learning for inverse problems

: SR EANEERNE S
Upper level (learning): EMESEIELCSEEL
Given (X,',y,')?zl,y,' ~ AX,', solve y"!gj Aigg
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Lower level (solve inverse problem): Eg:;‘:ﬁ:g:é;
~ 2 ' <

5(0) = argmin {D(Ax, 1)) + Ro(x))  BMHERE T B E
EREC RGN EEE

von Stackelberg 1934, 2003, Haber and Tenorio '03, Kunisch and Pock '13,

De los Reyes and Schonlieb '13, Crocket and Fessler '22, De los Reyes and Villacis '23



Bilevel learning for inverse problems

Upper level (learning):
Given (x;, yi)i_y, yi = Ax;, solve

1 n
. - A. 6 . . 2
% 3 I%(0) = w13

Lower level (solve inverse problem):
%i(0) = arg min {D(Ax, y;) + Ro(x)}
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RRESMaREEEEE

von Stackelberg 1934, 2003, Haber and Tenorio '03, Kunisch and Pock '13,
De los Reyes and Schonlieb '13, Crocket and Fessler '22, De los Reyes and Villacis '23
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contrastive learning Hinton '02
fitting prior distribution Roth and Black '05
adversarial training Arjovsky et al. '17

adverserial regularization Lunz et al. '18



Inexact Learning Strategy



Exact Approaches for Bilevel learning
Upper level: mein f(0) := g(x(9))
Lower level: )’%(0) ‘= arg min h(x, 0)

X
Access to function values f(0)

1) Compute x(6)
2) Evaluate f(0) := g(x(0))



Exact Approaches for Bilevel learning
Upper level: mein f(0) := g(x(9))

Lower level: £(0) := arg min h(x, )
X

Access to gradients V£ (0)
0= 92h(%(0),0)%'(0) + 9g0xh(%(F),0) < K(0)=-B'A

VF(0) = (X (0))*Vg(x(0)) = —A*w, with Bw = b
A = 00 h(%(0),0), B =082h(%(6),0), b= Vg(x(0))

1) Compute x(6)
2) Solve Bw = b
3) Compute VF(0) = —A*w



Exact Approaches for Bilevel learning
Upper level: mein f(0) := g(x(9))

Lower level: £(0) := arg min h(x, )
X

Access to gradients V£ (0)
0= d2h(X(0),0)%'(0) + De0xh(%(F),0) < £'(0)=-B7'A

VF(0) = (X (0))*Vg(x(0)) = —A*w, with Bw = b
A = 00 h(%(0),0), B =082h(%(6),0), b= Vg(x(0))

1) Compute x(6)
2) Solve Bw = b
3) Compute VF(0) = —A*w
This strategy has a number of problems:
» X(0) has to be computed
» Derivative assumes X(6) is exact minimizer
» Large system of linear equations has to be solved



Inexact Approaches for Bilevel learning

Upper level: mein f(0) := g(x(9))
Lower level: £(0) := arg min h(x, )
X

Approximate function values £.(0) =~ 7(0):
1) Compute X-(f) to e accuracy: |X-(0) — X(0)| < &
2) Evaluate f(0) := g(x:(0))

Approximate gradients z(0) ~ Vf(6):

Ac = 806xh(>?€(9)7 0)7 B. = 8)2<h()?€(9)7 0)7 be = Vg()?e(g))
1) Compute x.(0) to € accuracy: [X-(0) — %(0)| < e

2) Solve B.w = b. to ¢ accuracy: |[|[B.w — b.|| < ¢
3) Compute z(0) = —Aiw



Construction of Inexact Algorithms
Wish list:
P use gradients
» adaptive step-sizes (e.g. via backtracking): as large as possible
as small as necessary, maximize progress
P adaptive accuracy: as low as possible as high as necessary,
minimize compute



Construction of Inexact Algorithms
Wish list:
P use gradients
» adaptive step-sizes (e.g. via backtracking): as large as possible
as small as necessary, maximize progress
P adaptive accuracy: as low as possible as high as necessary,
minimize compute
Existing algorithms:

1) Zero-order: DFO-LS Ehrhardt and Roberts '21
» adaptive accuracy using recent research in derivative-free
optimization
» does not scale well due to lack of gradients
2) First-order: HOAG Pedregosa '16
P A-prior chosen accuracy €
» Convergence with stepsize « = 1/L



Construction of Inexact Algorithms
Wish list:
P use gradients
» adaptive step-sizes (e.g. via backtracking): as large as possible
as small as necessary, maximize progress
P adaptive accuracy: as low as possible as high as necessary,
minimize compute
Existing algorithms:

1) Zero-order: DFO-LS Ehrhardt and Roberts '21
» adaptive accuracy using recent research in derivative-free
optimization
» does not scale well due to lack of gradients
2) First-order: HOAG Pedregosa '16
P A-prior chosen accuracy €
» Convergence with stepsize « = 1/L
Ingredients:
P inexact gradient as descent direction
P inexact backtracking



Inexact Gradient as a Descent Direction

Assumptions:
» h is strongly convex and Lj-smooth
» g is Lg-smooth
> V2h(x,0) and V2,h(x,0) are Lipschitz

Lemma: Let ||ex|| < (1 —n)||zk||, 7 € (0,1), ex := zx — VI (6k).
Then —z, is a descent direction for f at 0.

Prop: Let % := X, (6k). There exists computable ¢;:
el < c1(Rk)ek + c2(Rk)dk + 362 =: wy



Inexact Gradient as a Descent Direction

Assumptions:
» h is strongly convex and Lj-smooth
» g is Lg-smooth
> V2h(x,0) and V2,h(x,0) are Lipschitz

Lemma: Let ||ex|| < (1 —n)||zk||, 7 € (0,1), ex := zx — VI (6k).
Then —z, is a descent direction for f at 60y.

Prop: Let % := X, (6k). There exists computable ¢;:
el < c1(Rh)ek + c2(Re)dk + 32 =: wi

1) Given &g, 0k, compute Xk, zx and wy

2) If we > (1 —n)||z«|l, go to step 1) with smaller =i,

Theorem: If ||V (0x)| > 0, then z is a descent direction for all
sufficiently small =, 0.



Sufficient Decrease with Inexact Gradients

Ok+1 = Ok — oz

» Uki1 = g(Ruv1) + IVE(Rirr) et - 2 5k+1
> L= g(%) — Ve (R)llex — ﬁfi < f(6k)

Theorem: If Uy 1 + nagl|zx]|?> < Lg, then
f(9k+1) —+ nak||zk||2 < f(9k)

f(Ok+1)



Sufficient Decrease with Inexact Gradients

Ok+1 = Ok — oz

> Upir = g(Rks1) + [ VE(Rkr) lekin + 3£ £e7 1 > (Oky1)
> L= g(%)— [|[Vg(X Vg e < f(0k)

Theorem: If Uy 1 + nagl|zx]|?> < Lg, then
f(9k+1) —+ 77ak||zk||2 < f(9k)

Theorem: Let f be Ls-smooth and V£ (6x) # 0.
If £x,ek+1 > 0 are small enough, then there exists o, > 0, such
that Upy1 + nagl|z]|? < Lk.



Method of Adaptive Inexact Descent (MAID)

One iteration:
1) Compute inexact gradient z, (possibly reducing ., d)

2) Attempt backtracking to compute «y; if failed, go to step 1)
with smaller gy, 0y

3) Update estimate: 0411 = 0 — gz

4) Increase accuracies .1, 0,11 and inital step size a1



Method of Adaptive Inexact Descent (MAID)

One iteration:
1) Compute inexact gradient z, (possibly reducing ., d)

2) Attempt backtracking to compute «y; if failed, go to step 1)
with smaller gy, 0y

3) Update estimate: 0411 = 0 — gz

4) Increase accuracies .1, 0,11 and inital step size a1

Theorem: If V£ (6x) # 0, then MAID updates 6 in finite time.



Method of Adaptive Inexact Descent (MAID)

One iteration:

1) Compute inexact gradient zx (possibly reducing £, 0x)

2) Attempt backtracking to compute «y; if failed, go to step 1)
with smaller gy, 0y

3) Update estimate: 0411 = 0 — gz

4) Increase accuracies .1, 0,11 and inital step size a1

Theorem: If V£ (6x) # 0, then MAID updates 6 in finite time.

Theorem: Let f be bounded below. Then MAID’s iterates 6
satisfy | V£ (0k)| — 0.



Numerical Results



TV denoising: MAID vs DFO-LS (2 parameters)

1
h(x,0) = §”X —yel* + 69[112 \/‘lei‘z + |Vaxi|? + (e/121)2

smoothed TV

Noisy, PSNR=20.0 DFO-LS, 26.7 MAID, 26.9

» similar image quality



TV denoising: MAID vs DFO-LS (2 parameters)
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Total Lower-level + Linear solver iterations

» Robustness to initial accuracy gg
» MAID particularly initially faster



TV denoising: MAID vs DFO-LS (2 parameters)
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FoE denoising: MAID vs HOAG (= 2.5k parameters)

K

1
h(x,0) = =Ix = y[I” + e " || s x| g
k=1

2

Noisy, PSNR=20.3 HOAG?, 28.8 MAID, 29.7

» MAID learns better regularizer than all HOAG variants; here
best quadratic e = C/k?



FoE denoising: MAID vs HOAG (= 2.5k parameters)
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» MAID automatically tunes best accuracy schedule



FoE denoising: MAID vs HOAG (= 2.5k parameters)
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» accuracy schedule important; here slower decay better



Inexact Piggyback for Bilevel learning

Upper level: moin L(0) == £1(x(0)) + £2(y(6))

Lower level: x(0),y(0) := argmin max(fx, y) + g(x) — *(y)
x .y

If g and f* are regular enough, gradients can be computed via
VL) = §(0) ® X(0) + Y(0) ® (0)

where X(6), Y (6) solve another saddle-point problem of a similar

form involving V2g(%(0)), V2f*(9(0)), V{1(X()) and V{2(%(6))

Idea: this is of the same form as for MAID.

Problems of this form:

» learning discretisations of TV Chambolle and Pock '21

» training ICNNs after primal-dual reformulation Wong et al. '24



Learning TV discretisations

- q

non-adaptive adaptive

standard TV non-adaptive adaptive
PSNR = 25.82 dB PSNR. = 26.63 dB PSNR = 26.90 dB



Learning TV discretisations Il

18x 107
adaptive, a=107%, g,=8,=10"°
—— adaptive, a=1073% g,=8, =107
17 x 103
* —— adaptive, a=10"%, £,= 5, =102
non-adaptive, @ =103, £, =8, =107
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o
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163 1
compute
» results still depend on parameters

P sensitivity much reduced



CT Reconstruction

ICNN-AR, PSNR=29.3 ICNN-Bilevel, 31.4 LPD, 34.2



Conclusions & Future Work

Conclusions
» Bilevel learning: supervised learning for variational
regularization; computationally very hard
» Accuracy in the optimization algorithm is important; stability
and efficiency
» MAID is a first-order algorithm with adaptive accuracies for
descent and backtracking
» High-dimensional parametrizations can be learned; e.g. FoE,
ICNN (a few thousand parameters)
Future work

» Smart accuracy schedule; can we disentangle accuracies ¢, ¢
and step size «

» Stochastic variants for training from large data



