
Inexact Algorithms for Bilevel Learning

Matthias J. Ehrhardt

Department of Mathematical Sciences, University of Bath, UK

14 January, 2025

Joint work with:

M. S. Salehi, H. S. Wong (both Bath),
S. Mukherjee (Kharagpur), L. Roberts (Sydney),
L. Bogensperger (Zurich), T. Pock (Graz) Mohammed

Sadegh Salehi
Hok Shing

Wong
Lea

Bogensperger

Inverse Problems and Deep Learning: 7-9 July 2025

Deadline: 28 Feb 2025

Outline

1) Bilevel learning of a regularizer

minx
1
2∥Ax − y∥22+λR(x)

2) Inexact learning strategy

3) Numerical results

4) Inexact Piggyback

Inverse problems and Variational Regularization

Ax = y
x : desired solution
y : observed data
A : mathematical model

Goal: recover x given y
Variational regularization
Approximate a solution x∗ of Ax = y via

x̂ ∈ argminx

{
D(Ax , y) + λR(x)

}
D data fidelity: related to noise statistics
R regularizer: penalizes unwanted features, stability

λ ≥ 0 regularization parameter: weights data and regularizer

Scherzer et al. ’08, Ito and Jin ’15, Benning and Burger ’18

Example: Magnetic Resonance Imaging (MRI)

MRI Reconstruction Lustig et al. ’07

Fourier transform F , sampling Sw = (wi)i∈Ω

min
x

{∑
i∈Ω

|(Fx)i − y i |2 + λ∥∇x∥1
}

MRI scanner

data poor choice good choice

More Complicated Regularizers

Fields-of-Experts (FoE) Roth and Black ’05

R(x) =
K∑

k=1

λk∥κk ∗ x∥γk

E.g. 48 kernels 7× 7 = 2448 parameters

noisy poor choice well-trained

More Complicated Regularizers

Fields-of-Experts (FoE) Roth and Black ’05

R(x) =
K∑

k=1

λk∥κk ∗ x∥γk

E.g. 48 kernels 7× 7 = 2448 parameters

Input Convex Neural Networks (ICNN) Amos et al. ’17, Mukherjee

et al. ’24’

R(x) = zK ,

zk+1 = σ(Wkzk + Vkx + bk), k = 0, . . . ,K − 1, z0 = x

constraints on σ and Wk , e.g. 2 layers, 2000 parameters

▶ Convex Ridge Regularizers (CRR) Goujon et al. ’22, ≈ 4000
parameters

▶ ...

Bilevel learning for inverse problems

Upper level (learning):
Given (xi , yi)

n
i=1, yi ≈ Axi , solve

min
θ

1

n

n∑
i=1

∥x̂i (θ)− xi∥22

Lower level (solve inverse problem):

x̂i (θ) = argmin
x

{D(Ax , yi) +Rθ(x)}

von Stackelberg 1934, 2003, Haber and Tenorio ’03, Kunisch and Pock ’13,

De los Reyes and Schönlieb ’13, Crocket and Fessler ’22, De los Reyes and Villacis ’23

▶ contrastive learning Hinton ’02

▶ fitting prior distribution Roth and Black ’05

▶ adversarial training Arjovsky et al. ’17

▶ adverserial regularization Lunz et al. ’18

▶ ...

Bilevel learning for inverse problems

Upper level (learning):
Given (xi , yi)

n
i=1, yi ≈ Axi , solve

min
θ

1

n

n∑
i=1

∥x̂i (θ)− xi∥22

Lower level (solve inverse problem):

x̂i (θ) = argmin
x

{D(Ax , yi) +Rθ(x)}

von Stackelberg 1934, 2003, Haber and Tenorio ’03, Kunisch and Pock ’13,

De los Reyes and Schönlieb ’13, Crocket and Fessler ’22, De los Reyes and Villacis ’23

▶ contrastive learning Hinton ’02

▶ fitting prior distribution Roth and Black ’05

▶ adversarial training Arjovsky et al. ’17

▶ adverserial regularization Lunz et al. ’18

▶ ...

Inexact Learning Strategy

Exact Approaches for Bilevel learning

Upper level: min
θ

f (θ) := g(x̂(θ))

Lower level: x̂(θ) := argmin
x

h(x , θ)

Access to function values f (θ)

1) Compute x̂(θ)
2) Evaluate f (θ) := g(x̂(θ))

This strategy has a number of problems:
▶ x̂(θ) has to be computed
▶ Derivative assumes x̂(θ) is exact minimizer
▶ Large system of linear equations has to be solved

Exact Approaches for Bilevel learning

Upper level: min
θ

f (θ) := g(x̂(θ))

Lower level: x̂(θ) := argmin
x

h(x , θ)

Access to gradients ∇f (θ)

0 = ∂2
xh(x̂(θ), θ)x̂

′(θ) + ∂θ∂xh(x̂(θ), θ) ⇔ x̂ ′(θ) = −B−1A

∇f (θ) = (x̂ ′(θ))∗∇g(x̂(θ)) = −A∗w , with Bw = b

A = ∂θ∂xh(x̂(θ), θ), B = ∂2
xh(x̂(θ), θ), b = ∇g(x̂(θ))

1) Compute x̂(θ)
2) Solve Bw = b
3) Compute ∇f (θ) = −A∗w

This strategy has a number of problems:
▶ x̂(θ) has to be computed
▶ Derivative assumes x̂(θ) is exact minimizer
▶ Large system of linear equations has to be solved

Exact Approaches for Bilevel learning

Upper level: min
θ

f (θ) := g(x̂(θ))

Lower level: x̂(θ) := argmin
x

h(x , θ)

Access to gradients ∇f (θ)

0 = ∂2
xh(x̂(θ), θ)x̂

′(θ) + ∂θ∂xh(x̂(θ), θ) ⇔ x̂ ′(θ) = −B−1A

∇f (θ) = (x̂ ′(θ))∗∇g(x̂(θ)) = −A∗w , with Bw = b

A = ∂θ∂xh(x̂(θ), θ), B = ∂2
xh(x̂(θ), θ), b = ∇g(x̂(θ))

1) Compute x̂(θ)
2) Solve Bw = b
3) Compute ∇f (θ) = −A∗w

This strategy has a number of problems:
▶ x̂(θ) has to be computed
▶ Derivative assumes x̂(θ) is exact minimizer
▶ Large system of linear equations has to be solved

Inexact Approaches for Bilevel learning

Upper level: min
θ

f (θ) := g(x̂(θ))

Lower level: x̂(θ) := argmin
x

h(x , θ)

Approximate function values fε(θ) ≈ f (θ):

1) Compute x̂ε(θ) to ε accuracy: |x̂ε(θ)− x̂(θ)| < ε

2) Evaluate fε(θ) := g(x̂ε(θ))

Approximate gradients z(θ) ≈ ∇f (θ):

Aε = ∂θ∂xh(x̂ε(θ), θ), Bε = ∂2
xh(x̂ε(θ), θ), bε = ∇g(x̂ε(θ))

1) Compute x̂ε(θ) to ε accuracy: |x̂ε(θ)− x̂(θ)| < ε

2) Solve Bεw = bε to δ accuracy: ∥Bεw − bε∥ < δ

3) Compute z(θ) = −A∗
εw

Construction of Inexact Algorithms
Wish list:
▶ use gradients
▶ adaptive step-sizes (e.g. via backtracking): as large as possible

as small as necessary, maximize progress
▶ adaptive accuracy: as low as possible as high as necessary,

minimize compute

Existing algorithms:
1) Zero-order: DFO-LS Ehrhardt and Roberts ’21

▶ adaptive accuracy using recent research in derivative-free
optimization

▶ does not scale well due to lack of gradients

2) First-order: HOAG Pedregosa ’16

▶ A-prior chosen accuracy εk
▶ Convergence with stepsize α = 1/L

Ingredients:
▶ inexact gradient as descent direction
▶ inexact backtracking

Construction of Inexact Algorithms
Wish list:
▶ use gradients
▶ adaptive step-sizes (e.g. via backtracking): as large as possible

as small as necessary, maximize progress
▶ adaptive accuracy: as low as possible as high as necessary,

minimize compute

Existing algorithms:
1) Zero-order: DFO-LS Ehrhardt and Roberts ’21

▶ adaptive accuracy using recent research in derivative-free
optimization

▶ does not scale well due to lack of gradients

2) First-order: HOAG Pedregosa ’16

▶ A-prior chosen accuracy εk
▶ Convergence with stepsize α = 1/L

Ingredients:
▶ inexact gradient as descent direction
▶ inexact backtracking

Construction of Inexact Algorithms
Wish list:
▶ use gradients
▶ adaptive step-sizes (e.g. via backtracking): as large as possible

as small as necessary, maximize progress
▶ adaptive accuracy: as low as possible as high as necessary,

minimize compute

Existing algorithms:
1) Zero-order: DFO-LS Ehrhardt and Roberts ’21

▶ adaptive accuracy using recent research in derivative-free
optimization

▶ does not scale well due to lack of gradients

2) First-order: HOAG Pedregosa ’16

▶ A-prior chosen accuracy εk
▶ Convergence with stepsize α = 1/L

Ingredients:
▶ inexact gradient as descent direction
▶ inexact backtracking

Inexact Gradient as a Descent Direction

Assumptions:

▶ h is strongly convex and Lh-smooth

▶ g is Lg -smooth

▶ ∇2
xh(x , θ) and ∇2

xθh(x , θ) are Lipschitz

Lemma: Let ∥ek∥ ≤ (1− η)∥zk∥, η ∈ (0, 1), ek := zk −∇f (θk).
Then −zk is a descent direction for f at θk .

Prop: Let x̂k := x̂εk (θk). There exists computable ci :
∥ek∥ ≤ c1(x̂k)εk + c2(x̂k)δk + c3ε

2
k =: ωk

1) Given εk , δk , compute x̂k , zk and ωk

2) If ωk > (1− η)∥zk∥, go to step 1) with smaller εk , δk

Theorem: If ∥∇f (θk)∥ > 0, then zk is a descent direction for all
sufficiently small εk , δk .

Inexact Gradient as a Descent Direction

Assumptions:

▶ h is strongly convex and Lh-smooth

▶ g is Lg -smooth

▶ ∇2
xh(x , θ) and ∇2

xθh(x , θ) are Lipschitz

Lemma: Let ∥ek∥ ≤ (1− η)∥zk∥, η ∈ (0, 1), ek := zk −∇f (θk).
Then −zk is a descent direction for f at θk .

Prop: Let x̂k := x̂εk (θk). There exists computable ci :
∥ek∥ ≤ c1(x̂k)εk + c2(x̂k)δk + c3ε

2
k =: ωk

1) Given εk , δk , compute x̂k , zk and ωk

2) If ωk > (1− η)∥zk∥, go to step 1) with smaller εk , δk

Theorem: If ∥∇f (θk)∥ > 0, then zk is a descent direction for all
sufficiently small εk , δk .

Sufficient Decrease with Inexact Gradients

θk+1 = θk − αkzk

▶ Uk+1 := g(x̂k+1) + ∥∇g(x̂k+1)∥εk+1 +
L∇g

2 ε2k+1 ≥ f (θk+1)

▶ Lk := g(x̂k)− ∥∇g(x̂k)∥εk −
L∇g

2 ε2k ≤ f (θk)

Theorem: If Uk+1 + ηαk∥zk∥2 ≤ Lk , then
f (θk+1) + ηαk∥zk∥2 ≤ f (θk).

Theorem: Let f be Lf -smooth and ∇f (θk) ̸= 0.
If εk , εk+1 > 0 are small enough, then there exists αk > 0, such
that Uk+1 + ηαk∥zk∥2 ≤ Lk .

Sufficient Decrease with Inexact Gradients

θk+1 = θk − αkzk

▶ Uk+1 := g(x̂k+1) + ∥∇g(x̂k+1)∥εk+1 +
L∇g

2 ε2k+1 ≥ f (θk+1)

▶ Lk := g(x̂k)− ∥∇g(x̂k)∥εk −
L∇g

2 ε2k ≤ f (θk)

Theorem: If Uk+1 + ηαk∥zk∥2 ≤ Lk , then
f (θk+1) + ηαk∥zk∥2 ≤ f (θk).

Theorem: Let f be Lf -smooth and ∇f (θk) ̸= 0.
If εk , εk+1 > 0 are small enough, then there exists αk > 0, such
that Uk+1 + ηαk∥zk∥2 ≤ Lk .

Method of Adaptive Inexact Descent (MAID)

One iteration:

1) Compute inexact gradient zk (possibly reducing εk , δk)

2) Attempt backtracking to compute αk ; if failed, go to step 1)
with smaller εk , δk

3) Update estimate: θk+1 = θk − αkzk

4) Increase accuracies εk+1, δk+1 and inital step size αk+1

Theorem: If ∇f (θk) ̸= 0, then MAID updates θk in finite time.

Theorem: Let f be bounded below. Then MAID’s iterates θk
satisfy ∥∇f (θk)∥ → 0.

Method of Adaptive Inexact Descent (MAID)

One iteration:

1) Compute inexact gradient zk (possibly reducing εk , δk)

2) Attempt backtracking to compute αk ; if failed, go to step 1)
with smaller εk , δk

3) Update estimate: θk+1 = θk − αkzk

4) Increase accuracies εk+1, δk+1 and inital step size αk+1

Theorem: If ∇f (θk) ̸= 0, then MAID updates θk in finite time.

Theorem: Let f be bounded below. Then MAID’s iterates θk
satisfy ∥∇f (θk)∥ → 0.

Method of Adaptive Inexact Descent (MAID)

One iteration:

1) Compute inexact gradient zk (possibly reducing εk , δk)

2) Attempt backtracking to compute αk ; if failed, go to step 1)
with smaller εk , δk

3) Update estimate: θk+1 = θk − αkzk

4) Increase accuracies εk+1, δk+1 and inital step size αk+1

Theorem: If ∇f (θk) ̸= 0, then MAID updates θk in finite time.

Theorem: Let f be bounded below. Then MAID’s iterates θk
satisfy ∥∇f (θk)∥ → 0.

Numerical Results

TV denoising: MAID vs DFO-LS (2 parameters)

h(x , θ) =
1

2
∥x − yt∥2 + eθ[1]

∑
i

√
|∇1xi |2 + |∇2xi |2 + (eθ[2])2︸ ︷︷ ︸

smoothed TV

Noisy, PSNR=20.0 DFO-LS, 26.7 MAID, 26.9

▶ similar image quality

TV denoising: MAID vs DFO-LS (2 parameters)

▶ Robustness to initial accuracy ε0
▶ MAID particularly initially faster

TV denoising: MAID vs DFO-LS (2 parameters)

▶ MAID adapts accuracy, converge to same values in similar
trend

FoE denoising: MAID vs HOAG (≈ 2.5k parameters)

h(x , θ) =
1

2
∥x − y∥2 + eθ[0]

K∑
k=1

eθ[k]∥ck ∗ x∥θ[K+k]

Noisy, PSNR=20.3 HOAG2, 28.8 MAID, 29.7

▶ MAID learns better regularizer than all HOAG variants; here
best quadratic εk = C/k2

FoE denoising: MAID vs HOAG (≈ 2.5k parameters)

100 101 102 103

Upper-level iterations

10 5

10 4

10 3

10 2

10 1

100

101
Lo

we
r-l

ev
el

 a
cc

ur
ac

y
0 = 10
0 = 10 1

0 = 10 3

0 = 10 5

▶ MAID automatically tunes best accuracy schedule

FoE denoising: MAID vs HOAG (≈ 2.5k parameters)

100 101 102 103

Upper-level iterations

10 8

10 6

10 4

10 2

Lo
we

r-l
ev

el
 a

cc
ur

ac
y

MAID 0 = 10 1

HOAG geometric 0 = 10 1

HOAG quadratic 0 = 10 1

HOAG cubic 0 = 10 1

▶ accuracy schedule important; here slower decay better

Inexact Piggyback for Bilevel learning

Upper level: min
θ

L(θ) := ℓ1(x̂(θ)) + ℓ2(ŷ(θ))

Lower level: x̂(θ), ŷ(θ) := argmin
x

max
y

⟨θx , y⟩+ g(x)− f ∗(y)

If g and f ∗ are regular enough, gradients can be computed via

∇L(θ) = ŷ(θ)⊗ X̂ (θ) + Ŷ (θ)⊗ x̂(θ)

where X̂ (θ), Ŷ (θ) solve another saddle-point problem of a similar
form involving ∇2g(x̂(θ)), ∇2f ∗(ŷ(θ)), ∇ℓ1(x̂(θ)) and ∇ℓ2(x̂(θ))

Idea: this is of the same form as for MAID.

Problems of this form:

▶ learning discretisations of TV Chambolle and Pock ’21

▶ training ICNNs after primal-dual reformulation Wong et al. ’24

Learning TV discretisations

non-adaptive adaptive

Learning TV discretisations II

compute

▶ results still depend on parameters

▶ sensitivity much reduced

CT Reconstruction

ICNN-AR, PSNR=29.3 ICNN-Bilevel, 31.4 LPD, 34.2

Conclusions & Future Work

Conclusions

▶ Bilevel learning: supervised learning for variational
regularization; computationally very hard

▶ Accuracy in the optimization algorithm is important; stability
and efficiency

▶ MAID is a first-order algorithm with adaptive accuracies for
descent and backtracking

▶ High-dimensional parametrizations can be learned; e.g. FoE,
ICNN (a few thousand parameters)

Future work

▶ Smart accuracy schedule; can we disentangle accuracies ε, δ
and step size α

▶ Stochastic variants for training from large data

