## **Inexact Algorithms for Bilevel Learning**

#### Matthias J. Ehrhardt

Department of Mathematical Sciences, University of Bath, UK

27 February, 2025

#### Joint work with:

M. S. Salehi, H. S. Wong (both Bath),

S. Mukherjee (Kharagpur), L. Roberts (Sydney),

L. Bogensperger (Zurich), T. Pock (Graz)



Mohammed Sadegh Salehi



Hok Shing Wong



Lea Bogensperger







## Inverse Problems and Deep Learning: 7-9 July 2025



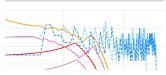
### Outline

1) Bilevel learning of a regularizer



 $\min_{x} \{ \frac{1}{2} ||Ax - y||_{2}^{2} + \lambda \mathcal{R}(x) \}$ 

2) Inexact learning strategy Salehi et al. '24, submitted to SIMODS



3) Numerical results





**4)** Inexact Primal-Dual Bogensperger et al. '24, submitted to JMIV





## Inverse problems and Variational Regularization

$$Ax = y$$

x : desired solution

y : observed data

A: mathematical model

**Goal:** recover X given Y

### Variational regularization

Approximate a solution  $x^*$  of Ax = y via

$$\hat{\mathbf{x}} \in \operatorname{arg\,min}_{\mathbf{x}} \left\{ \mathcal{D}(A\mathbf{x}, \mathbf{y}) + \lambda \mathcal{R}(\mathbf{x}) \right\}$$

 $\mathcal{D}$  data fidelity: related to noise statistics

R regularizer: penalizes unwanted features, stability

 $\lambda \geq 0$  regularization parameter: weights data and regularizer

Scherzer et al. '08, Ito and Jin '15, Benning and Burger '18

## Example: Magnetic Resonance Imaging (MRI)

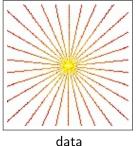
### MRI Reconstruction Lustig et al. '07

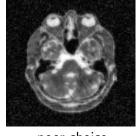
Fourier transform F, sampling  $Sw = (w_i)_{i \in \Omega}$ 

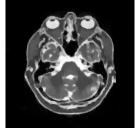
$$\min_{\mathbf{x}} \left\{ \sum_{i \in \Omega} |(F\mathbf{x})_i - \mathbf{y}_i|^2 + \lambda \|\nabla \mathbf{x}\|_1 \right\}$$



MRI scanner







poor choice

good choice

## More Complicated Regularizers

### Fields-of-Experts (FoE) Roth and Black '05

$$\mathcal{R}(x) = \sum_{k=1}^{K} \frac{\lambda_k}{\|\kappa_k * x\|_{\gamma_k}}$$

E.g., 48 kernels  $7 \times 7 = 2448$  parameters



noisy



poor choice



well-trained

### More Complicated Regularizers

### Fields-of-Experts (FoE) Roth and Black '05

$$\mathcal{R}(x) = \sum_{k=1}^{K} \lambda_k \|\kappa_k * x\|_{\gamma_k}$$

E.g., 48 kernels  $7 \times 7 = 2448$  parameters

### Input Convex Neural Networks (ICNN) Amos et al. '17, Mukherjee

et al. '24

$$\mathcal{R}(x) = z_K,$$
  
 $z_{k+1} = \sigma(\frac{W_k z_k + V_k x + b_k}{V_k x + b_k}), k = 0, \dots, K - 1, z_0 = x$ 

constraints on  $\sigma$  and  $W_k$ , e.g., 2 layers, 2000 parameters

- ► Convex Ridge Regularizers (CRR) Goujon et al. '22,  $\approx$  4000 parameters

### Bilevel learning for inverse problems

Upper level (learning):  
Given 
$$(x_i, y_i)_{i=1}^n, y_i \approx Ax_i$$
, solve
$$\min_{\theta} \frac{1}{n} \sum_{i=1}^n \|\hat{\mathbf{x}}_i(\theta) - x_i\|_2^2$$

### Lower level (solve inverse problem):

$$\hat{\mathbf{x}}_i(\theta) = \arg\min_{\mathbf{x}} \left\{ \mathcal{D}(A\mathbf{x}, y_i) + \mathcal{R}_{\theta}(\mathbf{x}) \right\}$$

von Stackelberg 1934, Haber and Tenorio '03, Kunisch and Pock '13,

De los Reyes and Schönlieb '13, Crocket and Fessler '22, De los Reyes and Villacis '23

### Bilevel learning for inverse problems

### **Upper level** (learning):

Given  $(x_i, y_i)_{i=1}^n, y_i \approx Ax_i$ , solve

$$\min_{\boldsymbol{\theta}} \frac{1}{n} \sum_{i=1}^{n} \|\hat{\mathbf{x}}_i(\boldsymbol{\theta}) - \mathbf{x}_i\|_2^2$$

### Lower level (solve inverse problem):

$$\hat{\mathbf{x}}_i(\theta) = \arg\min_{\mathbf{x}} \left\{ \mathcal{D}(A\mathbf{x}, y_i) + \mathcal{R}_{\theta}(\mathbf{x}) \right\}$$

von Stackelberg 1934, Haber and Tenorio '03, Kunisch and Pock '13,

De los Reyes and Schönlieb '13, Crocket and Fessler '22, De los Reyes and Villacis '23

- contrastive learning Hinton '02
- ► fitting prior distribution Roth and Black '05
- adversarial training Arjovsky et al. '17
- adverserial regularization Lunz et al. '18

# Inexact Learning Strategy

# Exact Approaches for Bilevel learning

Upper level: 
$$\min_{\theta} f(\theta) := g(\hat{x}(\theta))$$

Lower level: 
$$\hat{\mathbf{x}}(\theta) := \arg\min_{\mathbf{x}} h(\mathbf{x}, \theta)$$

Access to **function values**  $f(\theta)$ 

- 1) Compute  $\hat{x}(\theta)$
- 2) Evaluate  $f(\theta) := g(\hat{x}(\theta))$

# Exact Approaches for Bilevel learning

Upper level: 
$$\min_{\theta} f(\theta) := g(\hat{x}(\theta))$$

**Lower level**: 
$$\hat{\mathbf{x}}(\theta) := \arg\min_{\mathbf{x}} h(\mathbf{x}, \theta)$$

Access to **gradients**  $\nabla f(\theta)$ 

$$0 = \partial_x^2 h(\hat{\mathbf{x}}(\theta), \theta) \hat{\mathbf{x}}'(\theta) + \partial_\theta \partial_x h(\hat{\mathbf{x}}(\theta), \theta) \quad \Leftrightarrow \quad \hat{\mathbf{x}}'(\theta) = -B^{-1}A$$

$$\nabla f(\theta) = (\hat{x}'(\theta))^* \nabla g(\hat{x}(\theta)) = -A^* w, \text{ with } Bw = b$$

$$A = \partial_{\theta} \partial_{x} h(\hat{x}(\theta), \theta), \quad B = \partial_{x}^{2} h(\hat{x}(\theta), \theta), \quad b = \nabla g(\hat{x}(\theta))$$

- 1) Compute  $\hat{x}(\theta)$
- 2) Solve Bw = b
- 3) Compute  $\nabla f(\theta) = -\mathbf{A}^* \mathbf{w}$

# Exact Approaches for Bilevel learning

**Upper level**: 
$$\min_{\theta} f(\theta) := g(\hat{x}(\theta))$$

**Lower level**: 
$$\hat{x}(\theta) := \arg\min_{x} h(x, \theta)$$

Access to **gradients**  $\nabla f(\theta)$ 

$$0 = \partial_x^2 h(\hat{\mathbf{x}}(\theta), \theta) \hat{\mathbf{x}}'(\theta) + \partial_\theta \partial_x h(\hat{\mathbf{x}}(\theta), \theta) \quad \Leftrightarrow \quad \hat{\mathbf{x}}'(\theta) = -B^{-1}A$$

$$\nabla f(\theta) = (\hat{x}'(\theta))^* \nabla g(\hat{x}(\theta)) = -A^* w, \text{ with } Bw = b$$

$$A = \partial_{\theta} \partial_{x} h(\hat{x}(\theta), \theta), \quad B = \partial_{x}^{2} h(\hat{x}(\theta), \theta), \quad b = \nabla g(\hat{x}(\theta))$$

- 1) Compute  $\hat{x}(\theta)$
- 2) Solve Bw = b
- 3) Compute  $\nabla f(\theta) = -A^*w$ This strategy has a number of problems:
- $\triangleright \hat{x}(\theta)$  has to be computed
- ▶ Derivative assumes  $\hat{x}(\theta)$  is exact minimizer
- Large system of linear equations has to be solved

# Inexact Approaches for Bilevel learning

Upper level: 
$$\min_{\theta} f(\theta) := g(\hat{x}(\theta))$$

Lower level: 
$$\hat{x}(\theta) := \arg\min_{x} h(x, \theta)$$

### Approximate function values $f_{\varepsilon}(\theta) \approx f(\theta)$ :

- 1) Compute  $\hat{x}_{\varepsilon}(\theta)$  to  $\varepsilon$  accuracy:  $|\hat{x}_{\varepsilon}(\theta) \hat{x}(\theta)| < \varepsilon$
- 2) Evaluate  $f_{\varepsilon}(\theta) := g(\hat{\mathsf{x}}_{\varepsilon}(\theta))$

### Approximate gradients $z(\theta) \approx \nabla f(\theta)$ :

$$A_{\varepsilon} = \partial_{\theta} \partial_{x} h(\hat{\mathbf{x}}_{\varepsilon}(\theta), \theta), \quad B_{\varepsilon} = \partial_{x}^{2} h(\hat{\mathbf{x}}_{\varepsilon}(\theta), \theta), \quad b_{\varepsilon} = \nabla g(\hat{\mathbf{x}}_{\varepsilon}(\theta))$$

- 1) Compute  $\hat{x}_{\varepsilon}(\theta)$  to  $\varepsilon$  accuracy:  $|\hat{x}_{\varepsilon}(\theta) \hat{x}(\theta)| < \varepsilon$
- 2) Solve  $B_{\varepsilon}w = b_{\varepsilon}$  to  $\delta$  accuracy:  $\|B_{\varepsilon}w b_{\varepsilon}\| < \delta$
- 3) Compute  $z(\theta) = -A_{\varepsilon}^* w$

## Construction of Inexact Algorithms

#### Wish list:

- use gradients
- adaptive step-sizes (e.g., via backtracking): as large as possible as small as necessary, maximize progress
- adaptive accuracy: as low as possible as high as necessary, minimize compute

## Construction of Inexact Algorithms

#### Wish list:

- use gradients
- adaptive step-sizes (e.g., via backtracking): as large as possible as small as necessary, maximize progress
- adaptive accuracy: as low as possible as high as necessary, minimize compute

### **Existing algorithms:**

- 1) Zero-order: DFO-LS Ehrhardt and Roberts '21
  - adaptive accuracy using recent research in derivative-free optimization
  - does not scale well due to lack of gradients
- 2) First-order: HOAG Pedregosa '16
  - ► A-prior chosen accuracy  $\varepsilon_k$
  - ▶ Convergence with stepsize  $\alpha = 1/L$

## Construction of Inexact Algorithms

#### Wish list:

- use gradients
- adaptive step-sizes (e.g., via backtracking): as large as possible as small as necessary, maximize progress
- adaptive accuracy: as low as possible as high as necessary, minimize compute

### **Existing algorithms:**

- 1) Zero-order: DFO-LS Ehrhardt and Roberts '21
  - adaptive accuracy using recent research in derivative-free optimization
  - does not scale well due to lack of gradients
- 2) First-order: HOAG Pedregosa '16
  - ► A-prior chosen accuracy  $\varepsilon_k$
  - ▶ Convergence with stepsize  $\alpha = 1/L$

### Ingredients:

- inexact gradient as descent direction
- ▶ inexact backtracking

### Inexact Gradient as a Descent Direction

### Assumptions:

- $\blacktriangleright$  h is strongly convex and  $L_h$ -smooth
- $\triangleright$  g is  $L_g$ -smooth
- $ightharpoonup 
  abla^2_x h(x,\theta)$  and  $abla^2_{x\theta} h(x,\theta)$  are Lipschitz

**Lemma:** Let 
$$\|e_k\| \le (1-\eta)\|z_k\|$$
,  $\eta \in (0,1)$ ,  $e_k := z_k - \nabla f(\theta_k)$ .

Then  $-z_k$  is a descent direction for f at  $\theta_k$ .

**Prop:** Let 
$$\hat{x}_k := \hat{x}_{\varepsilon_k}(\theta_k)$$
. There exists computable  $c_i$ :  $\|e_k\| \le c_1(\hat{x}_k)\varepsilon_k + c_2(\hat{x}_k)\delta_k + c_3\varepsilon_k^2 =: \omega_k$ 

### Inexact Gradient as a Descent Direction

### Assumptions:

- $\blacktriangleright$  h is strongly convex and  $L_h$ -smooth
- $\triangleright$  g is  $L_g$ -smooth
- ▶  $\nabla_x^2 h(x,\theta)$  and  $\nabla_{x\theta}^2 h(x,\theta)$  are Lipschitz

**Lemma:** Let  $\|e_k\| \le (1-\eta)\|z_k\|$ ,  $\eta \in (0,1)$ ,  $e_k := z_k - \nabla f(\theta_k)$ . Then  $-z_k$  is a descent direction for f at  $\theta_k$ .

**Prop:** Let 
$$\hat{x}_k := \hat{x}_{\varepsilon_k}(\theta_k)$$
. There exists computable  $c_i$ :  $\|e_k\| \le c_1(\hat{x}_k)\varepsilon_k + c_2(\hat{x}_k)\delta_k + c_3\varepsilon_k^2 =: \omega_k$ 

- 1) Given  $\varepsilon_k$ ,  $\delta_k$ , compute  $\hat{x}_k$ ,  $z_k$  and  $\omega_k$
- 2) If  $\omega_k > (1 \eta) \|z_k\|$ , go to step 1) with smaller  $\varepsilon_k, \delta_k$

**Theorem:** If  $\|\nabla f(\theta_k)\| > 0$ , then  $z_k$  is a descent direction for all sufficiently small  $\varepsilon_k, \delta_k$ .

### Sufficient Decrease with Inexact Gradients

$$\theta_{k+1} = \theta_k - \alpha_k z_k$$

- $U_{k+1} := g(\hat{x}_{k+1}) + \|\nabla g(\hat{x}_{k+1})\|_{\varepsilon_{k+1}} + \frac{L_{\nabla g}}{2}\varepsilon_{k+1}^2 \ge f(\theta_{k+1})$
- $L_k := g(\hat{x}_k) \|\nabla g(\hat{x}_k)\|_{\varepsilon_k} \frac{L_{\nabla g}}{2} \varepsilon_k^2 \le f(\theta_k)$

**Theorem:** If 
$$U_{k+1} + \eta \alpha_k ||z_k||^2 \le L_k$$
, then  $f(\theta_{k+1}) + \eta \alpha_k ||z_k||^2 \le f(\theta_k)$ .

### Sufficient Decrease with Inexact Gradients

$$\theta_{k+1} = \theta_k - \alpha_k z_k$$

- $U_{k+1} := g(\hat{x}_{k+1}) + \|\nabla g(\hat{x}_{k+1})\|_{\varepsilon_{k+1}} + \frac{L_{\nabla g}}{2} \varepsilon_{k+1}^2 \ge f(\theta_{k+1})$
- $L_k := g(\hat{x}_k) \|\nabla g(\hat{x}_k)\|_{\mathcal{E}_k} \frac{L_{\nabla g}}{2} \varepsilon_k^2 \le f(\theta_k)$

Theorem: If 
$$U_{k+1} + \eta \alpha_k ||z_k||^2 \le L_k$$
, then  $f(\theta_{k+1}) + \eta \alpha_k ||z_k||^2 \le f(\theta_k)$ .

**Theorem:** Let f be  $L_f$ -smooth and  $\nabla f(\theta_k) \neq 0$ . If  $\varepsilon_k, \varepsilon_{k+1} > 0$  are small enough, then there exists  $\alpha_k > 0$ , such that  $U_{k+1} + \eta \alpha_k \|z_k\|^2 \leq L_k$ .

# Method of Adaptive Inexact Descent (MAID)

#### One iteration:

- 1) Compute inexact gradient  $z_k$  (possibly reducing  $\varepsilon_k, \delta_k$ )
- 2) Attempt backtracking to compute  $\alpha_k$ ; if failed, go to step 1) with smaller  $\varepsilon_k, \delta_k$
- 3) Update estimate:  $\theta_{k+1} = \theta_k \alpha_k z_k$
- 4) Increase accuracies  $\varepsilon_{k+1}$ ,  $\delta_{k+1}$  and inital step size  $\alpha_{k+1}$

# Method of Adaptive Inexact Descent (MAID)

#### One iteration:

- 1) Compute inexact gradient  $z_k$  (possibly reducing  $\varepsilon_k, \delta_k$ )
- 2) Attempt backtracking to compute  $\alpha_k$ ; if failed, go to step 1) with smaller  $\varepsilon_k, \delta_k$
- 3) Update estimate:  $\theta_{k+1} = \theta_k \alpha_k z_k$
- 4) Increase accuracies  $\varepsilon_{k+1}$ ,  $\delta_{k+1}$  and inital step size  $\alpha_{k+1}$

**Theorem:** If  $\nabla f(\theta_k) \neq 0$ , then MAID updates  $\theta_k$  in finite time.

# Method of Adaptive Inexact Descent (MAID)

#### One iteration:

- 1) Compute inexact gradient  $z_k$  (possibly reducing  $\varepsilon_k, \delta_k$ )
- 2) Attempt backtracking to compute  $\alpha_k$ ; if failed, go to step 1) with smaller  $\varepsilon_k, \delta_k$
- 3) Update estimate:  $\theta_{k+1} = \theta_k \alpha_k z_k$
- 4) Increase accuracies  $\varepsilon_{k+1}$ ,  $\delta_{k+1}$  and inital step size  $\alpha_{k+1}$

**Theorem:** If  $\nabla f(\theta_k) \neq 0$ , then MAID updates  $\theta_k$  in finite time.

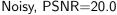
**Theorem:** Let f be bounded below. Then MAID's iterates  $\theta_k$  satisfy  $\|\nabla f(\theta_k)\| \to 0$ .

# **Numerical Results**

# TV denoising: MAID vs DFO-LS (2 parameters)

$$h(x,\theta) = \frac{1}{2} ||x - y_t||^2 + \underbrace{e^{\theta[1]} \sum_{i} \sqrt{|\nabla_1 x_i|^2 + |\nabla_2 x_i|^2 + (e^{\theta[2]})^2}}_{\text{smoothed TV}}$$







DFO-LS, 26.7



MAID, 26.9

similar image quality

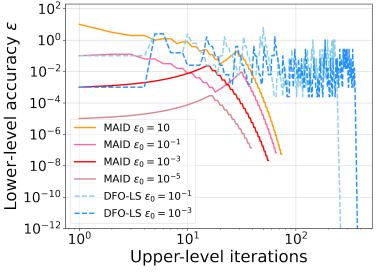
# TV denoising: MAID vs DFO-LS (2 parameters)



▶ Robustness to initial accuracy  $\varepsilon_0$ 

► MAID particularly initially faster

# TV denoising: MAID vs DFO-LS (2 parameters)



 MAID adapts accuracy, converge to same values in similar trend

# FoE denoising: MAID vs HOAG ( $\approx$ 2.5k parameters)

$$h(x,\theta) = \frac{1}{2} ||x - y||^2 + e^{\theta[0]} \sum_{k=1}^{K} e^{\theta[k]} ||c_k * x||_{\theta[K+k]}$$







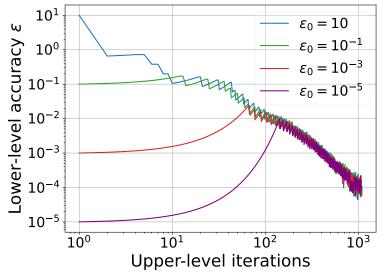
Noisy, PSNR=20.3

HOAG<sup>2</sup>, 28.8

MAID, 29.7

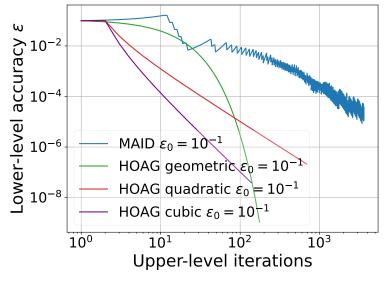
▶ MAID learns better regularizer than all HOAG variants; here best quadratic  $\varepsilon_k = C/k^2$ 

FoE denoising: MAID vs HOAG ( $\approx$  2.5k parameters)



MAID automatically tunes best accuracy schedule

FoE denoising: MAID vs HOAG ( $\approx$  2.5k parameters)



accuracy schedule important; here slower decay better

# Inexact Primal-Dual

## Inexact Primal-Dual for Bilevel learning

**Lower level**: 
$$\hat{x}(\theta), \hat{y}(\theta) := \arg\min_{x} \max_{y} \{ \langle \theta x, y \rangle + g(x) - f^*(y) \}$$

If g and  $f^*$  are regular enough, gradients can be computed via

$$abla \mathcal{L}( heta) = \hat{y}( heta) \otimes \hat{X}( heta) + \hat{Y}( heta) \otimes \hat{x}( heta)$$

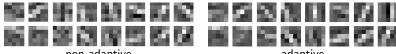
where  $\hat{X}(\theta)$ ,  $\hat{Y}(\theta)$  solve another saddle-point problem (this time quadratic!) involving  $\nabla^2 g(\hat{x}(\theta))$ ,  $\nabla^2 f^*(\hat{y}(\theta))$ ,  $\nabla \ell_1(\hat{x}(\theta))$  and  $\nabla \ell_2(\hat{x}(\theta))$ 

Idea: this is of the same form as for MAID.

#### Problems of this form:

- learning discretisations of TV Chambolle and Pock '21
- training ICNNs after primal-dual reformulation Wong et al. '24

# Learning TV discretisations



non-adaptive





standard TV PSNR = 25.82 dB

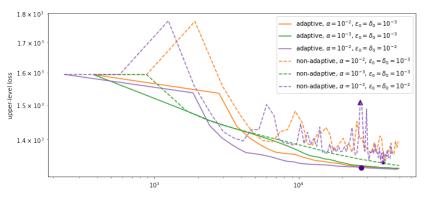


non-adaptive PSNR = 26.63 dB



adaptive PSNR = 26.90 dB

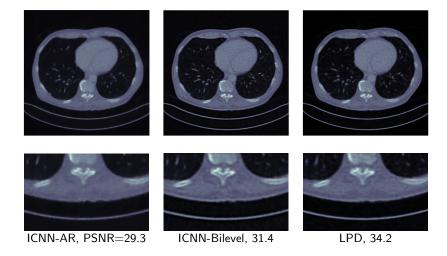
## Learning TV discretisations II



compute

- results still depend on parameters
- sensitivity much reduced

### **CT** Reconstruction



### Conclusions & Future Work

#### **Conclusions**

- ▶ **Bilevel learning**: supervised learning for variational regularization; computationally very hard
- Accuracy in the optimization algorithm is important; stability and efficiency
- MAID is a first-order algorithm with adaptive accuracies for descent and backtracking
- High-dimensional parametrizations can be learned; e.g., FoE, ICNN (a few thousand parameters)

#### Future work

- ▶ Smart accuracy schedule; disentangle accuracies  $\varepsilon, \delta$  and step size  $\alpha$
- ▶ Stochastic variants for training from large data