Inexact Algorithms for Bilevel Learning

Matthias J. Ehrhardt

Department of Mathematical Sciences, University of Bath, UK

4 July, 2025

Joint work with:

M. S. Salehi, H. S. Wong (both Bath),

S. Mukherjee (Kharagpur), L. Roberts (Sydney),

L. Bogensperger (Zurich), T. Pock (Graz)

Hok Shing Wong

Lea Bogensperger

Outline

1) Bilevel learning of a regularizer

 $\min_{x} \left\{ \frac{1}{2} \|Ax - y\|_{2}^{2} + \lambda \mathcal{R}(x) \right\}$

2) Inexact learning strategy Salehi et al. '25

3) Numerical results

4) Inexact Primal-Dual Bogensperger et al. '25

Inverse problems and Variational Regularization

$$Au = b$$

u : desired solutionb : observed data

A: mathematical model

Goal: recover *U* given *b*

Variational regularization

Approximate a solution u^* of Au = b via

$$\hat{\boldsymbol{u}} \in \operatorname{arg\,min}_{\boldsymbol{u}} \bigg\{ \mathcal{D}(\boldsymbol{A}\boldsymbol{u}, \boldsymbol{b}) + \lambda \mathcal{R}(\boldsymbol{u}) \bigg\}$$

 \mathcal{D} data fidelity: related to noise statistics

R regularizer: penalizes unwanted features, stability

 $\lambda \geq 0$ regularization parameter: weights data and regularizer

Scherzer et al. '08, Ito and Jin '15, Benning and Burger '18

Simple Regularizers

Compressed Sensing MRI with TV

Lustig et al. '07

Fourier transform F, sampling $Sw = (w_i)_{i \in \Omega}$

$$\min_{\mathbf{u}} \left\{ \|SF\mathbf{u} - \mathbf{b}\|^2 + \lambda \int \|\nabla \mathbf{u}(\mathbf{x})\| d\mathbf{x} \right\}$$

MRI scanner

TV

More "complicated" regularizers

$$\min_{x} \frac{1}{2} ||Ax - y||_{2}^{2} + \alpha \left(\sum_{j} ||(\nabla x)_{j}||_{2} \right)$$

More "complicated" regularizers

$$\min_{x} \frac{1}{2} \|Ax - y\|_{2}^{2} + \alpha \left(\underbrace{\sum_{j} \sqrt{\|(\nabla x)_{j}\|_{2}^{2} + \nu^{2}}}_{\approx \text{TV}(x)} + \underbrace{\frac{\xi}{2} \|x\|_{2}^{2}}_{\approx \text{Tv}(x)} \right) \underbrace{\sum_{j} \frac{\|\nabla x\|_{2}^{2}}{\|\nabla x\|_{2}^{2}}}_{\approx \text{Tv}(x)}$$

- Smooth and strongly convex
- ▶ Solution depends on choices of α , ν and ξ

How to choose all these parameters?

Parametric Regularizers

Fields-of-Experts (FoE) Roth and Black '05

$$\min_{\mathbf{u}} \left\{ \|\mathbf{u} - \mathbf{b}\|^2 + \lambda \mathcal{R}_{\theta}(\mathbf{u}) \right\}, \quad \mathcal{R}_{\theta}(\mathbf{u}) = \sum_{k=1}^{K} \lambda_k \phi(\kappa_k * \mathbf{u}, \gamma_k)$$

E.g., 48 kernels
$$7 \times 7 = 2448$$
 param., $\phi(z, \gamma) := \sqrt{\|z\|^2 + \gamma^2}$

noisy

poor choice

well-trained

Parametric Regularizers

Fields-of-Experts (FoE) Roth and Black '05

$$\min_{\mathbf{u}} \left\{ \|\mathbf{u} - \mathbf{b}\|^2 + \lambda \mathcal{R}_{\theta}(\mathbf{u}) \right\}, \quad \mathcal{R}_{\theta}(\mathbf{u}) = \sum_{k=1}^{K} \lambda_k \phi(\kappa_k * \mathbf{u}, \gamma_k)$$

E.g., 48 kernels
$$7 \times 7 = 2448$$
 param., $\phi(z, \gamma) := \sqrt{\|z\|^2 + \gamma^2}$

Input Convex Neural Networks (ICNN)

Amos et al. '17, Mukherjee et al. '24

$$\mathcal{R}_{\theta}(\mathbf{u}) = z_K,$$

$$z_{k+1} = \sigma(W_k z_k + V_k x + b_k), k = 0, \dots, K - 1, z_0 = \mathbf{u}$$

constraints on σ and W_k , e.g., 2 layers, 2000 parameters

- Convex Ridge Regularizers (CRR) Goujon et al. '22, ≈ 4000 parameters
- ► Non-convex: TDV, wCRR, wICNN, IDCNN ... Kobler et al. '21, Goujon et al. '24, Shumaylov et al. '24, Zhang and Leong '25

How to Train a Regularizer? Bilevel learning

Upper level (learning):

Given $(u_i, b_i)_{i=1}^n, b_i \approx Au_i$, solve

$$\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \|\hat{\mathbf{u}}_i(\theta) - \mathbf{u}_i\|_2^2$$

Lower level (solve inverse problem):

$$\hat{\mathbf{u}}_i(\theta) = \arg\min_{u} \left\{ \mathcal{D}(Au, b_i) + \mathcal{R}_{\theta}(u) \right\}$$

von Stackelberg 1934, Haber and Tenorio '03, Kunisch and Pock '13, De los Reyes and Schönlieb '13, Crocket and Fessler '22, De los Reyes and Villacis '23

Other options: contrastive learning Hinton '02, fitting prior distribution Roth and Black '05, adversarial training Arjovsky et al. '17, adversarial regularization Lunz et al. '18 ...

How to solve Bilevel Learning Problems: An Inexact Learning Strategy

Salehi et al. '25

Exact Approaches for Bilevel learning

Upper level:
$$\min_{\theta} f(\theta) := g(\hat{u}(\theta))$$

Lower level:
$$\hat{u}(\theta) := \arg \min_{u} h(u, \theta)$$

Access to **gradients**: with chain rule $\nabla f(\theta) = (\hat{u}'(\theta))^* \nabla g(\hat{u}(\theta))$ and differentiate optimality condition:

$$0 = \partial_{\theta}[\partial_{u}h(\hat{\mathbf{u}}(\theta), \theta)] = \partial_{u}^{2}h(\hat{\mathbf{u}}(\theta), \theta)\hat{\mathbf{u}}'(\theta) + \partial_{\theta}\partial_{u}h(\hat{\mathbf{u}}(\theta), \theta)$$

- 1) Compute $\hat{u}(\theta)$
- 2) Solve Bw = b, $B = \partial_u^2 h(\hat{\mathbf{u}}(\theta), \theta)$, $b = \nabla g(\hat{\mathbf{u}}(\theta))$
- 3) Compute $\nabla f(\theta) = -A^* w$, $A = \partial_{\theta} \partial_{u} h(\hat{\mathbf{u}}(\theta), \theta)$

Exact Approaches for Bilevel learning

Upper level:
$$\min_{\theta} f(\theta) := g(\hat{u}(\theta))$$

Lower level:
$$\hat{\mathbf{u}}(\theta) := \arg\min_{u} h(u, \theta)$$

Access to **gradients**: with chain rule $\nabla f(\theta) = (\hat{u}'(\theta))^* \nabla g(\hat{u}(\theta))$ and differentiate optimality condition:

$$0 = \partial_{\theta}[\partial_{u}h(\hat{u}(\theta),\theta)] = \partial_{u}^{2}h(\hat{u}(\theta),\theta)\hat{u}'(\theta) + \partial_{\theta}\partial_{u}h(\hat{u}(\theta),\theta)$$

- 1) Compute $\hat{u}(\theta)$
- 2) Solve Bw = b, $B = \partial_u^2 h(\hat{\mathbf{u}}(\theta), \theta)$, $b = \nabla g(\hat{\mathbf{u}}(\theta))$
- 3) Compute $\nabla f(\theta) = -A^* w$, $A = \partial_{\theta} \partial_u h(\hat{\mathbf{u}}(\theta), \theta)$

This strategy has a number of problems:

- $\triangleright \hat{u}(\theta)$ has to be computed
- ▶ Derivative assumes $\hat{u}(\theta)$ is exact minimizer
- Large system of linear equations has to be solved

Inexact Approaches for Bilevel learning

Upper level:
$$\min_{\theta} f(\theta) := g(\hat{u}(\theta))$$

Lower level:
$$\hat{u}(\theta) := \arg \min_{u} h(u, \theta)$$

Approximate gradients $z(\theta) \approx \nabla f(\theta)$:

1) Compute $\hat{u}_{\varepsilon}(\theta)$ to accuracy ε :

$$\|\hat{\mathbf{u}}_{\varepsilon}(\theta) - \hat{\mathbf{u}}(\theta)\| < \varepsilon$$

2) Solve $B_{\varepsilon}w=b_{\varepsilon}$ to accuracy δ :

$$\|B_{\varepsilon}\mathbf{w}_{\varepsilon,\delta}-b_{\varepsilon}\|<\delta,$$

with
$$B_{\varepsilon} = \partial_{u}^{2} h(\hat{u}_{\varepsilon}(\theta), \theta), b_{\varepsilon} = \nabla g(\hat{u}_{\varepsilon}(\theta))$$

3) Compute $z(\theta) = -A_{\varepsilon}^* w_{\varepsilon,\delta}$, $A_{\varepsilon} = \partial_{\theta} \partial_{u} h(\hat{\mathbf{u}}_{\varepsilon}(\theta), \theta)$

Construction of Inexact Algorithms

- 1) Ignore inaccuracy: unrolling, Jacobian-free backprop ...
 - Ochs et al. '16, Shaban et al. '19, Fung et al. '22, Bolte et al. '23
- 2) Zero-order: DFO-LS Ehrhardt and Roberts '21
 - ▶ adaptive accuracy using recent research in DFO Cartis et al. '19
 - does not scale well due to lack of gradients
- 3) First-order: HOAG Pedregosa '16

Compute
$$z_k = z(\theta_k)$$
 with accuracies ε_k, δ_k

$$\theta_{k+1} = \theta_k - \alpha_k z_k$$

- ► A-prior chosen accuracies ε_k , δ_k
- ► Convergence with stepsize $\alpha_k = 1/L$

Construction of Inexact Algorithms

- 1) Ignore inaccuracy: unrolling, Jacobian-free backprop ...
 - Ochs et al. '16, Shaban et al. '19, Fung et al. '22, Bolte et al. '23
- 2) Zero-order: DFO-LS Ehrhardt and Roberts '21
 - adaptive accuracy using recent research in DFO Cartis et al. '19
 - does not scale well due to lack of gradients
- 3) First-order: HOAG Pedregosa '16

Compute
$$z_k = z(\theta_k)$$
 with accuracies ε_k, δ_k

$$\theta_{k+1} = \theta_k - \alpha_k z_k$$

- ▶ A-prior chosen accuracies ε_k , δ_k
- Convergence with stepsize $\alpha_k = 1/L$

Wish list:

- use "first-order" information: $z(\theta)$
- adaptive accuracy: as low as possible as high as necessary, minimize compute
- adaptive step-sizes: as large as possible as small as necessary, maximize progress

Inexact Gradient as a Descent Direction

Q: How to get descent with $z_k = z(\theta_k)$ for accuracies ε_k, δ_k ?

Inexact Gradient as a Descent Direction

Q: How to get descent with $z_k = z(\theta_k)$ for accuracies ε_k, δ_k ?

Assumptions:

- \blacktriangleright $h(u,\theta)$ is strongly convex in u
- ▶ h is twice differentiable and $\partial_u h(u, \theta)$, $\partial_u^2 h(u, \theta)$ and $\partial_{u\theta}^2 h(u, \theta)$ are Lipschitz in u
- ightharpoonup g and f are L_g -smooth and L_f -smooth, respectively

Lem: If $||z_k - \nabla f(\theta_k)|| < ||z_k||$, then $-z_k$ is a descent direction for f at θ_k .

Lem: Ehrhardt and Roberts '24 There exists computable ω_k (dep. on $\hat{u}_k := \hat{u}_{\varepsilon_k}(\theta_k), \varepsilon_k, \delta_k$) such that $\|z_k - \nabla f(\theta_k)\| \le \omega_k$.

Inexact Gradient as a Descent Direction

Q: How to get descent with $z_k = z(\theta_k)$ for accuracies ε_k, δ_k ?

Assumptions:

- \blacktriangleright $h(u,\theta)$ is strongly convex in u
- ▶ h is twice differentiable and $\partial_u h(u, \theta)$, $\partial_u^2 h(u, \theta)$ and $\partial_{u\theta}^2 h(u, \theta)$ are Lipschitz in u
- ightharpoonup g and f are L_g -smooth and L_f -smooth, respectively

Lem: If $||z_k - \nabla f(\theta_k)|| < ||z_k||$, then $-z_k$ is a descent direction for f at θ_k .

Lem: Ehrhardt and Roberts '24 There exists computable ω_k (dep. on $\hat{u}_k := \hat{u}_{\varepsilon_k}(\theta_k), \varepsilon_k, \delta_k$) such that $\|\mathbf{z}_k - \nabla f(\theta_k)\| \leq \omega_k$.

- 1) Given ε_k , δ_k , compute \hat{u}_k , z_k and ω_k
- 2) If $\omega_k \geq ||z_k||$, go to step 1) with smaller ε_k, δ_k

Thm: If $\nabla f(\theta_k) \neq 0$, then $-z_k$ is a descent direction for all sufficiently small ε_k, δ_k .

Sufficient Decrease with Inexact Gradients

Q: How to choose α_k to get sufficient decrease? $f(\theta_{k+1}) + \eta \alpha_k \|z_k\|^2 \le f(\theta_k)$

Sufficient Decrease with Inexact Gradients

Q: How to choose α_k to get sufficient decrease?

$$f(\theta_{k+1}) + \eta \alpha_k ||z_k||^2 \le f(\theta_k)$$

Thm: Let $\nabla f(\theta_k) \neq 0$ and $\varepsilon_k, \varepsilon_{k+1} > 0$ be small enough.

Then there exists $\alpha_k > 0$, such that

$$g(\hat{u}_{k+1}) + \Delta_k + \Delta_{k+1} + \eta \alpha_k ||z_k||^2 \leq g(\hat{u}_k),$$

which implies sufficient decrease.

Method of Adaptive Inexact Descent (MAID)

One iteration:

- 1) Compute inexact gradient z_k (possibly reducing ε_k, δ_k)
- 2) Attempt backtracking to compute α_k ; if failed, go to step 1) with smaller ε_k, δ_k
- 3) Update estimate: $\theta_{k+1} = \theta_k \alpha_k z_k$
- 4) Increase accuracies ε_{k+1} , δ_{k+1} and initial step size α_{k+1}

Thm: If $\nabla f(\theta_k) \neq 0$, then MAID updates θ_k in finite time.

Thm: Let f be bounded below. Then MAID's iterates θ_k satisfy $\|\nabla f(\theta_k)\| \to 0$.

Numerical Results

TV denoising: MAID vs DFO-LS (2 parameters)

$$h(u,\theta) = \frac{1}{2} ||u - y_t||^2 + \underbrace{e^{\theta[1]} \sum_{i} \sqrt{|\nabla_1 u_i|^2 + |\nabla_2 u_i|^2 + (e^{\theta[2]})^2}}_{\text{smoothed TV}}$$

DFO-LS, 26.7

MAID, 26.9

similar image quality

TV denoising: MAID vs DFO-LS (2 parameters)

- ▶ Robustness to initial accuracy ε_0
- MAID particularly initially faster

TV denoising: MAID vs DFO-LS (2 parameters)

 MAID adapts accuracy, converge to same values in similar trend

FoE Denoising: MAID (≈ 2.5 k parameters)

$$h(u,\theta) = \frac{1}{2}||u-b||^2 + \mathcal{R}_{\theta}(u)$$

$$\mathcal{R}_{\theta}(u) = \sum_{k=1}^{K} \lambda_k \phi(\kappa_k * u, \gamma_k)$$

MAID, 29.7

- "It works": learns denoising
- MAID automatically tunes best accuracy schedule

FoE Denoising: MAID vs HOAG

- accuracy schedule important; here slower decay better
- ► faster convergence, robust

HOAG², 28.8

MAID, 29.7

Inexact Primal-Dual

Bogensperger et al. '25

Inexact Primal-Dual for Bilevel learning

Lower level:
$$\hat{x}(\theta), \hat{y}(\theta) := \arg\min_{x} \max_{y} \{ \langle \theta x, y \rangle + g(x) - f^*(y) \}$$

If g and f^* are regular enough, gradients can be computed via

$$abla \mathcal{L}(heta) = \hat{y}(heta) \otimes \hat{X}(heta) + \hat{Y}(heta) \otimes \hat{x}(heta)$$

where $\hat{X}(\theta)$, $\hat{Y}(\theta)$ solve another saddle-point problem (this time quadratic!) involving $\nabla^2 g(\hat{x}(\theta))$, $\nabla^2 f^*(\hat{y}(\theta))$, $\nabla \ell_1(\hat{x}(\theta))$ and $\nabla \ell_2(\hat{x}(\theta))$

Idea: this is of the same form as for MAID.

Problems of this form:

- ► learning discretisations of TV Chambolle and Pock '21
- training ICNNs after primal-dual reformulation Wong et al. '24

Learning TV discretisations

non-adaptive

adaptive

standard TV PSNR = 25.82 dB

non-adaptive PSNR = 26.63 dB

adaptive PSNR = 26.90 dB

similar reconstructions

Learning TV discretisations II

- results still depend on parameters
- sensitivity much reduced

CT Reconstruction

much better performance with end-to-end learning

Mukherjee et al. '24, Adler and Öktem '18

Conclusions & Future Work

Conclusions

- ▶ Bilevel learning: supervised learning for variational regularization; computationally very hard
- Accuracy in the optimization algorithm is important; stability and efficiency
- ► MAID is a first-order algorithm with adaptive accuracies for descent and backtracking
- ► High-dimensional parametrizations can be learned; e.g., FoE, ICNN (a few thousand parameters)

Future work

- Other models, e.g., inexact forward operator
- Smart accuracy schedule; disentangle accuracies ε, δ and step size α
- Stochastic variants for training from large data Salehi et al. '25

