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Inverse problems and Variational Regularization

Au=0>b

u : desired solution
b : observed data
A : mathematical model

Goal: recover U given b

Variational regularization
Approximate a solution u* of Au= b via

€ arg minu{D(Au, b) + )\R(u)}

D data fidelity: related to noise statistics
R regularizer: penalizes unwanted features, stability
A > 0 regularization parameter: weights data and regularizer

Scherzer et al. '08, Ito and Jin '15, Benning and Burger '18



Simple Regularizers

Compressed Sensing MRI with TV
Lustig et al. '07
Fourier transform F, sampling Sw = (w;);cq

min{||5Fu —b|? + A/ ||Vu(x)||dx}

—

ZIN

data pseudo inverse




More “complicated” regularizers

1
min §|]Ax—y||§ + a(Z [(Vx)jll2
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=TV(x)




More “complicated” regularizers

1 3
mxmzqu—y||§+a<z u<vX>ju§+u2+2||x||%)
J

~TV(x)

» Smooth and strongly convex
» Solution depends on choices of «, v and &

Vary v (=1, £ =1073) Vary € (=1, v =1073)

=l I SN =yl i Nl

v =001 v=01 v=1 £=001 £=01 =1
o = s 100 150 200 20

How to choose all these parameters?



Parametric Regularizers

Fields-of-Experts (FOE) Roth and Black '05
K
mind = 1P + XRo(6) b, Raw) = 3 Mo+ 70
k=1

E.g., 48 kernels 7 x 7 = 2448 param., ¢(z,7) := +/||z||? + 2

poor choice well-trained



Parametric Regularizers

Fields-of-Experts (FOE) Roth and Black '05
K
mind = B + MRo0) ), Raf) = 3 Ao+ 20
k=1
E.g., 48 kernels 7 x 7 = 2448 param., ¢(z,7) := +/||z||? + +?

Input Convex Neural Networks (ICNN)
Amos et al. '17, Mukherjee et al. '24

RQ(U):ZK,
Zk+1 :U(Wk2k+ VkX—i-bk),k:O,...,K—l,Zo: u

constraints on o and W, e.g., 2 layers, 2000 parameters

» Convex Ridge Regularizers (CRR) Goujon et al. '22, =~ 4000
parameters

» Non-convex: TDV, wCRR, wiCNN, IDCNN ...
Kobler et al. '21, Goujon et al. '24, Shumaylov et al. '24, Zhang and Leong '25



How to Train a Regularizer? Bilevel learning

Upper level (learning): ;:gg::zg:g:

Given (u,-, bi)?:lv b,' ~ Au,-, solve yq!ﬁ:ﬁn A;gu
n - .

min 137 16.0) - w2 TEAEEAnE sSSP
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Lower level (solve inverse problem): EEEECE S S
a;(0) = argmin {D(Au, bi) + Ro(u)} ANEEP NN ZENE
NRESHeREQ RS
von Stackelberg 1934, Haber and Tenorio '03, Kunisch and Pock '13,
De los Reyes and Schénlieb '13, Crocket and Fessler '22, De los Reyes and Villacis '23

Other options: contrastive learning Hinton 02, fitting prior
distribution Roth and Black '05, adversarial training Arjovsky et al. '17,
adversarial regularization Lunz et al. '18 ...



How to solve Bilevel Learning Problems:
An Inexact Learning Strategy

Salehi et al. '25



Exact Approaches for Bilevel learning
Upper level: mein f(0) :=g(a(0))

Lower level: 4(0) := arg min h(u, 6)
u

Access to gradients: with chain rule V£ (0) = (4'(0))*Vg(i(0))
and differentiate optimality condition:

0 = 9y[duh(a(0),0)] = 95h(a(0), 0)d'(0) + Dpduh(ai(0), 0)

1) Compute 4(6)
2) Solve Bw = b, B =032h(i(0),0), b=Vg(i(0))
3) Compute VF(0) = —A*w, A= 9pd,h(i(6),0)



Exact Approaches for Bilevel learning

Upper level: mein f(0) := g(i(9))
Lower level: 4(0) := arg min h(u, 6)
u

Access to gradients: with chain rule V£ (0) = (4'(0))*Vg(i(0))
and differentiate optimality condition:

0 = 9y[duh(a(0),0)] = 95h(a(0), 0)d'(0) + Dpduh(ai(0), 0)

1) Compute 4(6)

2) Solve Bw = b, B =032h(i(0),0), b=Vg(i(0))

3) Compute VF(0) = —A*w, A= 9pd,h(i(6),0)
This strategy has a number of problems:

» () has to be computed

» Derivative assumes i(0) is exact minimizer

P> Large system of linear equations has to be solved



Inexact Approaches for Bilevel learning
Upper level: moin f(0) := g(i(9))
Lower level: 0(0) := arg min h(u, )

u

Approximate gradients z(0) ~ Vf(6):

1) Compute §.(0) to accuracy ¢ :
10:(6) — a(O)]| < e
2) Solve B.w = b. to accuracy 0 :
| Bow: s — be|| <6,
with B. = 95h(0:(0), 6), b- = Ve(i=(6))
3) Compute z(0) = —Aiw.s5, A = 0p0,h(0-(0),0)
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Construction of Inexact Algorithms

1) lIgnore inaccuracy: unrolling, Jacobian-free backprop ...
Ochs et al. '16, Shaban et al. '19, Fung et al. '22, Bolte et al. '23
2) Zero-order: DFO-LS Ehrhardt and Roberts '21
» adaptive accuracy using recent research in DFO Cartis et al. '19
» does not scale well due to lack of gradients

3) First-order: HOAG Pedregosa '16

Compute zx = z(0x) with accuracies e, ok
Oky1 = Ok — apzk

» A-prior chosen accuracies &y, d
» Convergence with stepsize ax = 1/L

11



Construction of Inexact Algorithms

1) lIgnore inaccuracy: unrolling, Jacobian-free backprop ...
Ochs et al. '16, Shaban et al. '19, Fung et al. '22, Bolte et al. '23
2) Zero-order: DFO-LS Ehrhardt and Roberts '21
» adaptive accuracy using recent research in DFO Cartis et al. '19
» does not scale well due to lack of gradients

3) First-order: HOAG Pedregosa '16
Compute zx = z(0x) with accuracies e, ok
Oky1 = Ok — apzk

» A-prior chosen accuracies &y, d
» Convergence with stepsize ax = 1/L

Wish list:
» use “first-order” information: z(6)
P adaptive accuracy: as low as possible as high as necessary,
minimize compute
P adaptive step-sizes: as large as possible as small as necessary,
maximize progress
11



Inexact Gradient as a Descent Direction

Q: How to get descent with z, = z(6) for accuracies ey, 0x?

12



Inexact Gradient as a Descent Direction

Q: How to get descent with zx = z(6y) for accuracies &g, dx?

Assumptions:
» h(u,0) is strongly convex in u
> h is twice differentiable and d,h(u, 6),3>h(u, ) and
92,h(u,0) are Lipschitz in u
» g and f are Lg-smooth and L¢-smooth, respectively

Lem: If ||zx — VF(0k)|| < ||z«||, then —z is a descent direction
for f at 0.

Lem: Ehrhardt and Roberts 24 There exists computable wy (dep. on
Gy = bz, (0k), €k, Ok) such that ||zx — VI (0k)| < wk.

12



Inexact Gradient as a Descent Direction

Q: How to get descent with zx = z(6) for accuracies ey, dx?

Assumptions:
» h(u,0) is strongly convex in u
> h is twice differentiable and d,h(u, 6),3>h(u, ) and
92,h(u,0) are Lipschitz in u
» g and f are Lg-smooth and L¢-smooth, respectively

Lem: If ||zx — V7 (0k)| < ||zk||, then —z is a descent direction
for f at 6.

Lem: Ehrhardt and Roberts 24 There exists computable wy (dep. on
Gy = bz, (0k), €k, Ok) such that ||zx — VI (0k)| < wk.

1) Given ey, Ok, compute g, zx and wg
2) If wk > ||zk]|, go to step 1) with smaller =y, d

Thm: If V£(0x) # 0, then —z is a descent direction for all
sufficiently small &, 0.

12



Sufficient Decrease with Inexact Gradients

Q: How to choose « to get sufficient decrease?
F(Oks1) + nouellzicl* < (k)

13



Sufficient Decrease with Inexact Gradients

Q: How to choose « to get sufficient decrease?
F(Oks1) + nouellzicl* < (k)

» g(lks1) + Dpy1 > F(Oks1)
> g(lx) — Ak < f(0k)

~ L
> A=V (bi)llex + €2

O Oxs1 v

Thm: Let VF(0x) # 0 and 4,241 > 0 be small enough.
Then there exists o, > 0, such that

g(0k11) + Ak 4 Apra + nouclzel” < g(),
which implies sufficient decrease.

13



Method of Adaptive Inexact Descent (MAID)

One iteration:
1) Compute inexact gradient zx (possibly reducing £, 0x)

2) Attempt backtracking to compute «y; if failed, go to step 1)
with smaller gy, 0y

3) Update estimate: 0411 = 0 — gz

4) Increase accuracies 41,01 and initial step size a1

Thm: If V() # 0, then MAID updates 6 in finite time.

Thm: Let  be bounded below. Then MAID's iterates 6 satisfy
IVF(0i) |l — 0.

14



Numerical Results

15



TV denoising: MAID vs DFO-LS (2 parameters)

1
h(w,0) = S llu— el + WY/ 1Vauf2 + [ Va2 + (9122

~/

smoothed TV

Noisy, PSNR=20.0 DFO-LS, 26.7 MAID, 26.9

» similar image quality

16



TV denoising: MAID vs DFO-LS (2 parameters)
1031 Ro-—===r======r=—-p--- 1
|
1
1
1
‘\
1.
“\-
3102 pt
S MAID g5 = 10 N
MAID g, = 101
—— MAID gg =103
MAID g9 =105 ‘.\
DFO-LS g =1071 |
1014 --- DFO-LS gy =103 Yoo
10° 10! 102 103 10% 10°

Total Lower-level + Linear solver iterations

» Robustness to initial accuracy gg
» MAID particularly initially faster

17



TV denoising

102_

Lower-level accuracy €

10—10_

1091
1072
1074
10°

10—8_

: MAID vs DFO-LS (2 parameters)

— MAID & =10
—— MAID g5 =101
—— MAID g, =10"3
MAID g, = 1075
DFO-LS g5 = 101
--- DFO-LS g =103

10—12

> MAID adapts accuracy, converge to same values in similar

trend

100 10! 102
Upper-level iterations

18



FoE Denoising: MAID (= 2.5k parameters)

h(u,0) = —||u = b + Ry (u)

= Z)\kcb(ﬁk * U, Vk)

k=1 Noisy, PSNR=20.3 MAID, 29.7

1
W 10 =10
2 100 — g=1071
I —— g=10"3
g —— g =10"7
9] 0=
©
5 1072
>
L1073
o
2107
(=}
-
105
10° 10! 10? 103

Upper-level iterations

> “It works": learns denoising

> MAID automatically tunes best accuracy schedule

19



FoE Denoising: MAID vs HOAG

18
10-1 —— MAID
> 16 —— HOAG (geom)
8 10-2 —— HOAG (quad)
g 14 —— HOAG (cubic)
g107 8
H 12
2107y — MAID
H —— HOAG (geom) 10
—10"5} —— HOAG (quad)
—— HOAG (cubic) 8
106

10! 10?

Upper-level iterations

P accuracy schedule important;

here slower decay better

> faster convergence, robust

102 10° 104
Total Lower-level + Linear solver iterations

10°

HOAG?, 28.8

MAID, 29.7
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Inexact Primal-Dual

Bogensperger et al. '25

21



Inexact Primal-Dual for Bilevel learning
Upper level: mein{E(G) =41(%(0)) + L2(y(0))}

Lower level: %(0),7(0) := arg mXin mﬁx{(GX,y> +g(x) —f*(y)}

If g and f* are regular enough, gradients can be computed via
VL) = 9(0) @ X(0) + Y(0) ® (0)

where X(0), Y(f) solve another saddle-point problem (this time
quadratic!) involving V2g(%(0)), V2f*(9(0)), V¢1(X(6)) and
Vir(%(0))

Idea: this is of the same form as for MAID.

Problems of this form:
» learning discretisations of TV Chambolle and Pock '21

» training ICNNs after primal-dual reformulation Wong et al. '24

22



LearnmEI'V discretisations
FRUIELREY PO NIENN

non-adaptive adaptive

standard TV non-adaptive adaptive
PSNR = 25.82 dB PSNR = 26.63 dB PSNR = 26.90 dB

» similar reconstructions

23



Learning TV discretisations Il

18x10°

17 = 10°

L6x 103

15x 103

upper-level loss

14x10°

adaptive, a=107%, g,=8,=10"°
adaptive, @=1073, g4= 8, =103
adaptive, =107, g,=8,=10"%
non-adaptive, @ =103, £, =8, =107
non-adaptive, @ =1073, gy =8, =103

non-adaptive, a=107%, g, =5, =102

10
compute
» results still depend on parameters

P sensitivity much reduced

24



CT Reconstruction

ICNN-AR, PSNR=29.3 ICNN-Bilevel, 31.4 LPD, 34.2

» much better performance with end-to-end learning

Mukherjee et al. '24, Adler and Oktem '18
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Conclusions & Future Work
Conclusions

» Bilevel learning: supervised learning for variational
regularization; computationally very hard :

» Accuracy in the optimization algorithm is
important; stability and efficiency

> MAID is a first-order algorithm with adaptive
accuracies for descent and backtracking

» High-dimensional parametrizations can be learned;
e.g., FoE, ICNN (a few thousand parameters)

Future work
» Other models, e.g., inexact forward operator

» Smart accuracy schedule; disentangle accuracies
€,0 and step size

» Stochastic variants for training from large data
Salehi et al. '25
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